Unknown

Dataset Information

0

Comparison of Approaches for Heart Failure Case Identification From Electronic Health Record Data.


ABSTRACT: Accurate, real-time case identification is needed to target interventions to improve quality and outcomes for hospitalized patients with heart failure. Problem lists may be useful for case identification but are often inaccurate or incomplete. Machine-learning approaches may improve accuracy of identification but can be limited by complexity of implementation.To develop algorithms that use readily available clinical data to identify patients with heart failure while in the hospital.We performed a retrospective study of hospitalizations at an academic medical center. Hospitalizations for patients 18 years or older who were admitted after January 1, 2013, and discharged before February 28, 2015, were included. From a random 75% sample of hospitalizations, we developed 5 algorithms for heart failure identification using electronic health record data: (1) heart failure on problem list; (2) presence of at least 1 of 3 characteristics: heart failure on problem list, inpatient loop diuretic, or brain natriuretic peptide level of 500 pg/mL or higher; (3) logistic regression of 30 clinically relevant structured data elements; (4) machine-learning approach using unstructured notes; and (5) machine-learning approach using structured and unstructured data.Heart failure diagnosis based on discharge diagnosis and physician review of sampled medical records.A total of 47?119 hospitalizations were included in this study (mean [SD] age, 60.9 [18.15] years; 23 952 female [50.8%], 5258 black/African American [11.2%], and 3667 Hispanic/Latino [7.8%] patients). Of these hospitalizations, 6549 (13.9%) had a discharge diagnosis of heart failure. Inclusion of heart failure on the problem list (algorithm 1) had a sensitivity of 0.40 and a positive predictive value (PPV) of 0.96 for heart failure identification. Algorithm 2 improved sensitivity to 0.77 at the expense of a PPV of 0.64. Algorithms 3, 4, and 5 had areas under the receiver operating characteristic curves of 0.953, 0.969, and 0.974, respectively. With a PPV of 0.9, these algorithms had associated sensitivities of 0.68, 0.77, and 0.83, respectively.The problem list is insufficient for real-time identification of hospitalized patients with heart failure. The high predictive accuracy of machine learning using free text demonstrates that support of such analytics in future electronic health record systems can improve cohort identification.

SUBMITTER: Blecker S 

PROVIDER: S-EPMC5289894 | biostudies-literature | 2016 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Comparison of Approaches for Heart Failure Case Identification From Electronic Health Record Data.

Blecker Saul S   Katz Stuart D SD   Horwitz Leora I LI   Kuperman Gilad G   Park Hannah H   Gold Alex A   Sontag David D  

JAMA cardiology 20161201 9


<h4>Importance</h4>Accurate, real-time case identification is needed to target interventions to improve quality and outcomes for hospitalized patients with heart failure. Problem lists may be useful for case identification but are often inaccurate or incomplete. Machine-learning approaches may improve accuracy of identification but can be limited by complexity of implementation.<h4>Objective</h4>To develop algorithms that use readily available clinical data to identify patients with heart failur  ...[more]

Similar Datasets

| S-EPMC10496250 | biostudies-literature
| S-EPMC11229019 | biostudies-literature
| S-EPMC8423424 | biostudies-literature
| S-EPMC8010502 | biostudies-literature
| S-EPMC6135013 | biostudies-literature
| S-EPMC10976280 | biostudies-literature
| S-EPMC5201185 | biostudies-literature
| S-EPMC6261278 | biostudies-literature
| S-EPMC5391722 | biostudies-literature
| S-EPMC7721729 | biostudies-literature