Unknown

Dataset Information

0

Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2.


ABSTRACT: The engineered ascorbate peroxidase (APEX2) has been effectively employed in mammalian cells to identify protein-protein interactions. APEX2 fused to a protein of interest covalently tags nearby proteins with biotin-phenol (BP) when H2O2 is added to the cell culture medium. Subsequent affinity purification of biotinylated proteins allows for identification by MS. BP labelling occurs in 1 min, providing temporal control of labelling. The APEX2 tool enables proteomic mapping of subcellular compartments as well as identification of dynamic protein complexes, and has emerged as a new methodology for proteomic analysis. Despite these advantages, a related APEX2 approach has not been developed for yeast. Here we report methods to enable APEX2-mediated biotin labelling in yeast. Our work demonstrated that high osmolarity and disruption of cell wall integrity permits live-cell biotin labelling in Schizosaccharomyces pombe and Saccharomyces cerevisiae respectively. Under these conditions, APEX2 permitted targeted and proximity-dependent labelling of proteins. The methods described herein set the stage for large-scale proteomic studies in yeast. With modifications, the method is also expected to be effective in other organisms with cell walls, such as bacteria and plants.

SUBMITTER: Hwang J 

PROVIDER: S-EPMC5290329 | biostudies-literature | 2016 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2.

Hwang Jiwon J   Espenshade Peter J PJ  

The Biochemical journal 20160607 16


The engineered ascorbate peroxidase (APEX2) has been effectively employed in mammalian cells to identify protein-protein interactions. APEX2 fused to a protein of interest covalently tags nearby proteins with biotin-phenol (BP) when H2O2 is added to the cell culture medium. Subsequent affinity purification of biotinylated proteins allows for identification by MS. BP labelling occurs in 1 min, providing temporal control of labelling. The APEX2 tool enables proteomic mapping of subcellular compart  ...[more]

Similar Datasets

| S-EPMC7140434 | biostudies-literature
| S-EPMC7075897 | biostudies-literature
| S-EPMC7906605 | biostudies-literature
| S-EPMC7757666 | biostudies-literature
| S-EPMC7580243 | biostudies-literature
| S-EPMC4593093 | biostudies-literature
| S-EPMC7349886 | biostudies-literature
| S-EPMC9206227 | biostudies-literature
| S-EPMC6004002 | biostudies-literature
| S-EPMC3699407 | biostudies-literature