Unknown

Dataset Information

0

Disaggregating asthma: Big investigation versus big data.


ABSTRACT: We are facing a major challenge in bridging the gap between identifying subtypes of asthma to understand causal mechanisms and translating this knowledge into personalized prevention and management strategies. In recent years, "big data" has been sold as a panacea for generating hypotheses and driving new frontiers of health care; the idea that the data must and will speak for themselves is fast becoming a new dogma. One of the dangers of ready accessibility of health care data and computational tools for data analysis is that the process of data mining can become uncoupled from the scientific process of clinical interpretation, understanding the provenance of the data, and external validation. Although advances in computational methods can be valuable for using unexpected structure in data to generate hypotheses, there remains a need for testing hypotheses and interpreting results with scientific rigor. We argue for combining data- and hypothesis-driven methods in a careful synergy, and the importance of carefully characterized birth and patient cohorts with genetic, phenotypic, biological, and molecular data in this process cannot be overemphasized. The main challenge on the road ahead is to harness bigger health care data in ways that produce meaningful clinical interpretation and to translate this into better diagnoses and properly personalized prevention and treatment plans. There is a pressing need for cross-disciplinary research with an integrative approach to data science, whereby basic scientists, clinicians, data analysts, and epidemiologists work together to understand the heterogeneity of asthma.

SUBMITTER: Belgrave D 

PROVIDER: S-EPMC5292995 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Disaggregating asthma: Big investigation versus big data.

Belgrave Danielle D   Henderson John J   Simpson Angela A   Buchan Iain I   Bishop Christopher C   Custovic Adnan A  

The Journal of allergy and clinical immunology 20161118 2


We are facing a major challenge in bridging the gap between identifying subtypes of asthma to understand causal mechanisms and translating this knowledge into personalized prevention and management strategies. In recent years, "big data" has been sold as a panacea for generating hypotheses and driving new frontiers of health care; the idea that the data must and will speak for themselves is fast becoming a new dogma. One of the dangers of ready accessibility of health care data and computational  ...[more]

Similar Datasets

| S-EPMC7082327 | biostudies-literature
| S-EPMC9893024 | biostudies-literature
| S-EPMC8055065 | biostudies-literature
| S-EPMC4331277 | biostudies-literature
| S-EPMC7288990 | biostudies-literature
| S-EPMC6506214 | biostudies-literature
2017-05-11 | GSE68859 | GEO
| S-EPMC6499198 | biostudies-literature
2017-05-11 | E-GEOD-68859 | biostudies-arrayexpress
| S-EPMC4494865 | biostudies-literature