Unknown

Dataset Information

0

Eight-coordinate fluoride in a silicate double-four-ring.


ABSTRACT: Fluoride, nature's smallest anion, is capable of covalently coordinating to eight silicon atoms. The setting is a simple and common motif in zeolite chemistry: the box-shaped silicate double-four-ring (D4R). Fluoride seeks its center. It is the strain of box deformation that keeps fluoride in the middle of the box, and freezes what would be a transition state in its absence. Hypervalent bonding ensues. Fluoride's compactness works to its advantage in stabilizing the cage; chloride, bromide, and iodide do not bring about stabilization due to greater steric repulsion with the box frame. The combination of strain and hypervalent bonding, and the way they work in concert to yield this unusual case of multiple hypervalence, has potential for extension to a broader range of solid-state compounds.

SUBMITTER: Goesten MG 

PROVIDER: S-EPMC5293034 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Eight-coordinate fluoride in a silicate double-four-ring.

Goesten Maarten G MG   Hoffmann Roald R   Bickelhaupt F Matthias FM   Hensen Emiel J M EJ  

Proceedings of the National Academy of Sciences of the United States of America 20170117 5


Fluoride, nature's smallest anion, is capable of covalently coordinating to eight silicon atoms. The setting is a simple and common motif in zeolite chemistry: the box-shaped silicate double-four-ring (D4R). Fluoride seeks its center. It is the strain of box deformation that keeps fluoride in the middle of the box, and freezes what would be a transition state in its absence. Hypervalent bonding ensues. Fluoride's compactness works to its advantage in stabilizing the cage; chloride, bromide, and  ...[more]

Similar Datasets

| S-EPMC5778077 | biostudies-literature
| S-EPMC2737074 | biostudies-literature
| S-EPMC7590985 | biostudies-literature
| S-EPMC5515065 | biostudies-literature
| S-EPMC7839729 | biostudies-literature
| S-EPMC4876929 | biostudies-literature
| PRJEB24419 | ENA
| S-EPMC2515358 | biostudies-literature
| PRJNA687064 | ENA
| S-EPMC10865434 | biostudies-literature