Unknown

Dataset Information

0

Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake.


ABSTRACT: The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean phytoplankton biomass, species richness, and Shannon diversity index all showed significant differences among the four nutrient gradients. Phytoplankton community biomass was correlated with diversity (both species richness and Shannon diversity index), varying from positive to negative along the nutrient gradients. The influence of phytoplankton species richness on resource use efficiency (RUE) also changed from positive to negative along the nutrient gradients. However, the influence of phytoplankton Shannon diversity on RUE was not significant. Both phytoplankton species richness and Shannon diversity had a negative influence on community turnover (measured as community dissimilarity), i.e., a positive diversity-stability relationship. Furthermore, phytoplankton spatial stability decreased along the nutrient gradients in the lake. With increasing nutrient concentrations, the variability (standard deviation) of phytoplankton community biomass increased more rapidly than the average total biomass. Results in this study will be helpful in understanding the phytoplankton diversity effects on ecosystem functioning and how these effects are influenced by nutrient conditions in aquatic ecosystems.

SUBMITTER: Tian W 

PROVIDER: S-EPMC5295345 | biostudies-literature | 2017 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phytoplankton Diversity Effects on Community Biomass and Stability along Nutrient Gradients in a Eutrophic Lake.

Tian Wang W   Zhang Huayong H   Zhao Lei L   Zhang Feifan F   Huang Hai H  

International journal of environmental research and public health 20170120 1


The relationship between biodiversity and ecosystem functioning is a central issue in ecology, but how this relationship is affected by nutrient stress is still unknown. In this study, we analyzed the phytoplankton diversity effects on community biomass and stability along nutrient gradients in an artificial eutrophic lake. Four nutrient gradients, varying from slightly eutrophic to highly eutrophic states, were designed by adjusting the amount of polluted water that flowed into the lake. Mean p  ...[more]

Similar Datasets

| S-EPMC2440944 | biostudies-other
| S-EPMC8528935 | biostudies-literature
| S-EPMC8708429 | biostudies-literature
| S-EPMC3969358 | biostudies-literature
| S-EPMC7067047 | biostudies-literature
| S-EPMC5382911 | biostudies-literature
| S-EPMC5345797 | biostudies-literature
| S-EPMC6070987 | biostudies-literature
| S-EPMC5715125 | biostudies-literature
| S-EPMC7614052 | biostudies-literature