The earliest molecular response to stretch of insect flight muscle as revealed by fast X-ray diffraction recording.
Ontology highlight
ABSTRACT: Small insects drive their flight muscle at frequencies up to 1,000?Hz. This remarkable ability owes to the mechanism of stretch activation. However, it remains unknown as to what sarcomeric component senses the stretch and triggers the following force generation. Here we show that the earliest structural change after a step stretch is reflected in the blinking of the 111 and 201 reflections, as observed in the fast X-ray diffraction recording from isolated bumblebee flight muscle fibers. The same signal has also been observed in live bumblebee. We demonstrate that (1) the signal responds almost concomitantly to a quick step stretch, (2) the signal grows with increasing calcium levels as the stretch-activated force does, and (3) a full 3-dimensional model demonstrates that the signal is maximized when objects having a 38.7-nm actin periodicity travel by ~20?nm along the filament axis. This is the expected displacement if myosin heads are loosely associated with actin target zones (where actin monomers are favorably oriented), and are dragged by a 1.3% stretch, which effectively causes stretch-induced activation. These results support and strengthen our proposal that the myosin head itself acts as the stretch sensor, after calcium-induced association with actin in a low-force form.
SUBMITTER: Iwamoto H
PROVIDER: S-EPMC5296744 | biostudies-literature | 2017 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA