A novel, complex RUNX2 gene mutation causes cleidocranial dysplasia.
Ontology highlight
ABSTRACT: Haploinsufficiency of the runt-related transcription factor 2 (RUNX2) gene is known to cause cleidocranial dysplasia (CCD). Here, we investigated a complex, heterozygous RUNX2 gene mutation in a Chinese family with CCD and the pathogenesis associated with the variations.Genomic DNA extracted from peripheral venous blood was taken from the proband, her parents and 3 siblings, and 150 normal controls. Analysis of their respective RUNX2 gene sequences was performed by PCR amplification and Sanger sequencing. Pathogenesis associated with RUNX2 mutations was investigated by performing bioinformatics, real-time PCR, western blot analysis, and subcellular localization studies.We identified 2 complex heterozygous mutations involving a c.398-399 insACAGCAGCAGCAGCA insertion and a c.411-412 insG frameshift mutation in exon 3 of the RUNX2 gene. The frameshift mutation changed the structure of the RUNX2 protein while did not affect its expression at the mRNA level. Transfection of HEK293T cells with a plasmid expressing the RUNX2 variant decreased the molecular weight of the variant RUNX2 protein, compared with that of the wild-type protein. Subcellular localization assays showed both nuclear and cytoplasmic localization for the mutant protein, while the wild-type protein localized to the nucleus.Our findings demonstrated that the novel c.398-399insACAGCAGCAGCAGCA mutation occurred alongside the c.411-412insG frameshift mutation, which resulted in RUNX2 truncation. RUNX2 haploinsufficiency was associated with CCD pathogenesis. These results extend the known mutational spectrum of the RUNX2 gene and suggest a functional role of the novel mutation in CCD pathogenesis.
SUBMITTER: Xu W
PROVIDER: S-EPMC5297198 | biostudies-literature | 2017 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA