Unknown

Dataset Information

0

Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation?


ABSTRACT: The metabolic demand of walking generally increases following lower extremity amputation. This study used real-time visual feedback to modify biomechanical factors linked to an elevated metabolic demand of walking in individuals with transtibial amputation. Eight persons with unilateral, traumatic transtibial amputation and 8 uninjured controls participated. Two separate bouts of real-time visual feedback were provided during a single session of gait retraining to reduce 1) center of mass sway and 2) thigh muscle activation magnitudes and duration. Baseline and post-intervention data were collected. Metabolic rate, heart rate, frontal plane center of mass sway, quadriceps and hamstrings muscle activity, and co-contraction indices were evaluated during steady state walking at a standardized speed. Visual feedback successfully decreased center of mass sway 12% (p = 0.006) and quadriceps activity 12% (p = 0.041); however, thigh muscle co-contraction indices were unchanged. Neither condition significantly affected metabolic rate during walking and heart rate increased with center-of-mass feedback. Metabolic rate, center of mass sway, and integrated quadriceps muscle activity were all not significantly different from controls. Attempts to modify gait to decrease metabolic demand may actually adversely increase the physiological effort of walking in individuals with lower extremity amputation who are young, active and approximate metabolic rates of able-bodied adults.

SUBMITTER: Russell Esposito E 

PROVIDER: S-EPMC5300156 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Can real-time visual feedback during gait retraining reduce metabolic demand for individuals with transtibial amputation?

Russell Esposito Elizabeth E   Choi Harmony S HS   Darter Benjamin J BJ   Wilken Jason M JM  

PloS one 20170209 2


The metabolic demand of walking generally increases following lower extremity amputation. This study used real-time visual feedback to modify biomechanical factors linked to an elevated metabolic demand of walking in individuals with transtibial amputation. Eight persons with unilateral, traumatic transtibial amputation and 8 uninjured controls participated. Two separate bouts of real-time visual feedback were provided during a single session of gait retraining to reduce 1) center of mass sway a  ...[more]

Similar Datasets

| S-EPMC4035274 | biostudies-literature
| S-EPMC7604354 | biostudies-literature
| S-EPMC6193045 | biostudies-literature
| S-EPMC5857238 | biostudies-literature
| S-EPMC8564950 | biostudies-literature
| S-EPMC4767157 | biostudies-literature
| S-EPMC5507533 | biostudies-literature
| S-EPMC8169564 | biostudies-literature
| S-EPMC9778493 | biostudies-literature
| S-EPMC3720773 | biostudies-literature