Project description:Low birth weight may negatively affect energy storage and nutrient metabolism, and impair fetal growth and development. We analyzed effects of body weight (BW) and gestational period on nutrient composition in fetal Huanjiang mini-pigs. Fetuses with the lowest BW (LBW), middle BW (MBW), and highest BW (HBW) were collected at days 45, 75, and 110 of gestation. Crude protein (CP), crude fat, amino acid (AA), and fatty acid (FA) concentrations were determined. The BW gain, carcass weight, fat percentage, and uterus weight of sows increased as gestation progressed, as did litter weight, average individual fetal weight, fetal body weight, and dry matter (DM). The concentrations of Ala, Arg, crude fat, Gly, Pro, Tyr, C14:0, C16:0, C16:1, C18:1n9c, C18:2n6c, C18:3n3, C18:3n6, C20:0, C20:3n6, saturated FA (SFA), and monounsaturated FA (MUFA) increased significantly as gestation progressed. The percentage of skeleton, and the ratio of the liver, lung, and stomach to BW decreased as gestation progressed. There were also significant reductions in the concentrations of CP, Asp, Glu, His, Ile, Leu, Lys, Phe, Ser, Thr, essential AA (EAA), acidic AA, C17:0, C20:4n6, C22:6n3, unsaturated FA (UFA), polyunsaturated FA (PUFA), n-3PUFA, n-6PUFA as gestation progressed, and reductions in EAA/total AA (TAA), PUFA/SFA, and n-3/n-6 PUFA. The LBW fetuses exhibited the lowest BW and crude fat, C14:0, C16:1, C17:0, C18:2n6c, and MUFA concentrations at days 75 and 110 of gestation. They also exhibited lower Tyr concentration at day 45 of gestation and lower Glu concentration at day 75 of gestation than HBW fetuses. These findings suggest that LBW fetuses exhibit lower amounts of crude fat and several FAs during mid-gestation and late-gestation, which may in turn affect adaptability, growth, and development.
| S-EPMC6044520 | biostudies-literature