Unknown

Dataset Information

0

Effects of FGFR2 kinase activation loop dynamics on catalytic activity.


ABSTRACT: The structural mechanisms by which receptor tyrosine kinases (RTKs) regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2) kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In this study, we use several enhanced sampling molecular dynamics (MD) methods to elucidate the structural changes to the kinase's activation loop that occur upon phosphorylation. We show that phosphorylation favors inward motion of Arg664, while simultaneously favoring outward motion of Leu665 and Pro666. The latter structural change enables the substrate to bind leading to its resultant phosphorylation. Inward motion of Arg664 allows it to interact with the ?-phosphate of ATP as well as the substrate tyrosine. We show that this stabilizes the tyrosine and primes it for the catalytic phosphotransfer, and it may lower the activation barrier of the phosphotransfer reaction. Our work demonstrates the value of including dynamic information gleaned from computer simulation in deciphering RTK regulatory function.

SUBMITTER: Karp JM 

PROVIDER: S-EPMC5313233 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of FGFR2 kinase activation loop dynamics on catalytic activity.

Karp Jerome M JM   Sparks Samuel S   Cowburn David D  

PLoS computational biology 20170202 2


The structural mechanisms by which receptor tyrosine kinases (RTKs) regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2) kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In th  ...[more]

Similar Datasets

| S-EPMC2242471 | biostudies-literature
2013-07-17 | E-GEOD-48925 | biostudies-arrayexpress
2013-07-17 | GSE48925 | GEO
| S-ECPF-GEOD-48925 | biostudies-other
2023-03-08 | PXD034028 | Pride
| S-EPMC5018454 | biostudies-literature
| S-EPMC3787740 | biostudies-literature
| S-EPMC6890249 | biostudies-literature
| S-EPMC7867030 | biostudies-literature
| S-EPMC4089953 | biostudies-literature