Unknown

Dataset Information

0

Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells.


ABSTRACT: Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human ?-interferon and ?-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes.

SUBMITTER: Zhao CP 

PROVIDER: S-EPMC5316954 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells.

Zhao Chun-Peng CP   Guo Xiao X   Chen Si-Jia SJ   Li Chang-Zheng CZ   Yang Yun Y   Zhang Jun-He JH   Chen Shao-Nan SN   Jia Yan-Long YL   Wang Tian-Yun TY  

Scientific reports 20170220


Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian vir  ...[more]

Similar Datasets

| S-EPMC5867124 | biostudies-literature
| S-EPMC152283 | biostudies-literature
| S-EPMC2575829 | biostudies-other
| S-EPMC3772721 | biostudies-literature
| S-EPMC6349195 | biostudies-literature
| S-EPMC2504612 | biostudies-other
| S-EPMC3103581 | biostudies-literature
| S-EPMC6440468 | biostudies-literature
| S-EPMC4773380 | biostudies-literature
| S-EPMC1137483 | biostudies-other