Project description:Approximately 7,000 rare diseases affect millions of individuals in the United States. Although rare diseases taken together have an enormous impact, there is a significant gap between basic research and clinical interventions. Opportunities now exist to accelerate drug development for the treatment of rare diseases. Disease foundations and research centers worldwide focus on better understanding rare disorders. Here, the state-of-the-art drug discovery strategies for small molecules and biological approaches for orphan diseases are reviewed. Rare diseases are usually genetic diseases; hence, employing pharmacogenetics to develop treatments and using whole genome sequencing to identify the etiologies for such diseases are appropriate strategies to exploit. Beginning with high throughput screening of small molecules, the benefits and challenges of target-based and phenotypic screens are discussed. Explanations and examples of drug repurposing are given; drug repurposing as an approach to quickly move programs to clinical trials is evaluated. Consideration is given to the category of biologics which include gene therapy, recombinant proteins, and autologous transplants. Disease models, including animal models and induced pluripotent stem cells (iPSCs) derived from patients, are surveyed. Finally, the role of biomarkers in drug discovery and development, as well as clinical trials, is elucidated.
Project description:Rare diseases pose a global challenge, in that their collective impact on health systems is considerable, whereas their individually rare occurrence impedes research and development of efficient therapies. In consequence, patients and their families are often unable to find an expert for their affliction, let alone a cure. The tide is turning as pharmaceutical companies embrace gene therapy development and as serviceable tools for the repair of primary mutations separate the ability to create cures from underlying disease expertise. Whereas gene therapy by gene addition took decades to reach the clinic by incremental disease-specific refinements of vectors and methods, gene therapy by genome editing in its basic form merely requires certainty about the causative mutation. Suddenly we move from concept to trial in 3 years instead of 30: therapy development in the fast lane, with all the positive and negative implications of the phrase. Since their first application to eukaryotic cells in 2013, the proliferation and refinement in particular of tools based on clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) prokaryotic RNA-guided nucleases has prompted a landslide of therapy-development studies for rare diseases. An estimated thousands of orphan diseases are up for adoption, and legislative, entrepreneurial, and research initiatives may finally conspire to find many of them a good home. Here we summarize the most significant recent achievements and remaining hurdles in the application of CRISPR/Cas technology to rare diseases and take a glimpse at the exciting road ahead.
Project description:Clinical sequencing is expanding, but causal variants are still not identified in the majority of cases. These unsolved cases can aid in gene discovery when individuals with similar phenotypes are identified in systems such as the Matchmaker Exchange. We describe risks for gene discovery in this growing set of unsolved cases. In a set of rare disease cases with the same phenotype, it is not difficult to find two individuals with the same phenotype that carry variants in the same gene. We quantify the risk of false-positive association in a cohort of individuals with the same phenotype, using the prior probability of observing a variant in each gene from over 60,000 individuals (Exome Aggregation Consortium). Based on the number of individuals with a genic variant, cohort size, specific gene, and mode of inheritance, we calculate a P value that the match represents a true association. A match in two of 10 patients in MECP2 is statistically significant (P = 0.0014), whereas a match in TTN would not reach significance, as expected (P > 0.999). Finally, we analyze the probability of matching in clinical exome cases to estimate the number of cases needed to identify genes related to different disorders. We offer Rare Disease Match, an online tool to mitigate the uncertainty of false-positive associations.
Project description:There are few better examples of the need for data sharing than in the rare disease community, where patients, physicians, and researchers must search for "the needle in a haystack" to uncover rare, novel causes of disease within the genome. Impeding the pace of discovery has been the existence of many small siloed datasets within individual research or clinical laboratory databases and/or disease-specific organizations, hoping for serendipitous occasions when two distant investigators happen to learn they have a rare phenotype in common and can "match" these cases to build evidence for causality. However, serendipity has never proven to be a reliable or scalable approach in science. As such, the Matchmaker Exchange (MME) was launched to provide a robust and systematic approach to rare disease gene discovery through the creation of a federated network connecting databases of genotypes and rare phenotypes using a common application programming interface (API). The core building blocks of the MME have been defined and assembled. Three MME services have now been connected through the API and are available for community use. Additional databases that support internal matching are anticipated to join the MME network as it continues to grow.
Project description:Global analysis of RNA from 3 rare skin disease patients extracted from queratinocites and 2 healthy controls (analysis done in triplicate)
Project description:Studies of the genetic basis of complex traits have demonstrated a substantial role for common, small-effect variant polygenic burden (PB) as well as large-effect variants (LEV, primarily rare). We identify sufficient conditions in which GWAS-derived PB may be used for well-powered rare pathogenic variant discovery or as a sample prioritization tool for whole-genome or exome sequencing. Through extensive simulations of genetic architectures and generative models of disease liability with parameters informed by empirical data, we quantify the power to detect, among cases, a lower PB in LEV carriers than in non-carriers. Furthermore, we uncover clinically useful conditions wherein the risk derived from the PB is comparable to the LEV-derived risk. The resulting summary-statistics-based methodology (with publicly available software, PB-LEV-SCAN) makes predictions on PB-based LEV screening for 36 complex traits, which we confirm in several disease datasets with available LEV information in the UK Biobank, with important implications on clinical decision-making.
Project description:Machine learning has been proven to be a powerful tool in the identification of diagnostic tumor biomarkers but is often impeded in rare cancers due to small patient numbers. In patients suffering from recessive dystrophic epidermolysis bullosa (RDEB), early-in-life development of particularly aggressive cutaneous squamous-cell carcinomas (cSCCs) represents a major threat and timely detection is crucial to facilitate prompt tumor excision. As miRNAs have been shown to hold great potential as liquid biopsy markers, we characterized miRNA signatures derived from cultured primary cells specific for the potential detection of tumors in RDEB patients. To address the limitation in RDEB-sample accessibility, we analyzed the similarity of RDEB miRNA profiles with other tumor entities derived from the Cancer Genome Atlas (TCGA) repository. Due to the similarity in miRNA expression with RDEB-SCC, we used HN-SCC data to train a tumor prediction model. Three models with varying complexity using 33, 10 and 3 miRNAs were derived from the elastic net logistic regression model. The predictive performance of all three models was determined on an independent HN-SCC test dataset (AUC-ROC: 100%, 83% and 96%), as well as on cell-based RDEB miRNA-Seq data (AUC-ROC: 100%, 100% and 91%). In addition, the ability of the models to predict tumor samples based on RDEB exosomes (AUC-ROC: 100%, 93% and 100%) demonstrated the potential feasibility in a clinical setting. Our results support the feasibility of this approach to identify a diagnostic miRNA signature, by exploiting publicly available data and will lay the base for an improvement of early RDEB-SCC detection.
Project description:Complex diseases such as inflammatory bowel disease (IBD), which consists of ulcerative colitis and Crohn's disease, are a significant medical burden-70 000 new cases of IBD are diagnosed in the United States annually. In this review, we examine the history of genetic variant discovery in complex disease with a focus on IBD. We cover methods that have been applied to microsatellite, common variant, targeted resequencing and whole-exome and -genome data, specifically focusing on the progression of technologies towards rare-variant discovery. The inception of these methods combined with better availability of population level variation data has led to rapid discovery of IBD-causative and/or -associated variants at over 200 loci; over time, these methods have grown exponentially in both power and ascertainment to detect rare variation. We highlight rare-variant discoveries critical to the elucidation of the pathogenesis of IBD, including those in NOD2, IL23R, CARD9, RNF186 and ADCY7. We additionally identify the major areas of rare-variant discovery that will evolve in the coming years. A better understanding of the genetic basis of IBD and other complex diseases will lead to improved diagnosis, prognosis, treatment and surveillance.
Project description:Although nearly 10% of Americans suffer from a rare disease, clinical progress in individual rare diseases is severely compromised by lack of attention and research resources compared to common diseases. It is thus imperative to investigate these diseases at their most basic level to build a foundation and provide the opportunity for understanding their mechanisms and phenotypes, as well as potential treatments. One strategy for effectively and efficiently studying rare diseases is using genetically tractable organisms to model the disease and learn about the essential cellular processes affected. Beyond investigating dysfunctional cellular processes, modeling rare diseases in simple organisms presents the opportunity to screen for pharmacological or genetic factors capable of ameliorating disease phenotypes. Among the small model organisms that excel in rare disease modeling is the nematode Caenorhabditis elegans. With a staggering breadth of research tools, C. elegans provides an ideal system in which to study human disease. Molecular and cellular processes can be easily elucidated, assayed and altered in ways that can be directly translated to humans. When paired with other model organisms and collaborative efforts with clinicians, the power of these C. elegans studies cannot be overstated. This Review highlights studies that have used C. elegans in diverse ways to understand rare diseases and aid in the development of treatments. With continuing and advancing technologies, the capabilities of this small round worm will continue to yield meaningful and clinically relevant information for human health.