Therapeutic dosages of aspirin counteract the IL-6 induced pro-tumorigenic effects by slowing down the ribosome biogenesis rate.
Ontology highlight
ABSTRACT: Chronic inflammation is a risk factor for the onset of cancer and the regular use of aspirin reduces the risk of cancer development. Here we showed that therapeutic dosages of aspirin counteract the pro-tumorigenic effects of the inflammatory cytokine interleukin(IL)-6 in cancer and non-cancer cell lines, and in mouse liver in vivo. We found that therapeutic dosages of aspirin prevented IL-6 from inducing the down-regulation of p53 expression and the acquisition of the epithelial mesenchymal transition (EMT) phenotypic changes in the cell lines. This was the result of a reduction in c-Myc mRNA transcription which was responsible for a down-regulation of the ribosomal protein S6 expression which, in turn, slowed down the rRNA maturation process, thus reducing the ribosome biogenesis rate. The perturbation of ribosome biogenesis hindered the Mdm2-mediated proteasomal degradation of p53, throughout the ribosomal protein-Mdm2-p53 pathway. P53 stabilization hindered the IL-6 induction of the EMT changes. The same effects were observed in livers from mice stimulated with IL-6 and treated with aspirin. It is worth noting that aspirin down-regulated ribosome biogenesis, stabilized p53 and up-regulated E-cadherin expression in unstimulated control cells also. In conclusion, these data showed that therapeutic dosages of aspirin increase the p53-mediated tumor-suppressor activity of the cells thus being in this way able to reduce the risk of cancer onset, either or not linked to chronic inflammatory processes.
SUBMITTER: Brighenti E
PROVIDER: S-EPMC5325359 | biostudies-literature | 2016 Sep
REPOSITORIES: biostudies-literature
ACCESS DATA