Unknown

Dataset Information

0

Binding of Nitric Oxide in CDGSH-type [2Fe-2S] Clusters of the Human Mitochondrial Protein Miner2.


ABSTRACT: Iron-sulfur proteins are among the primary targets of nitric oxide in cells. Previous studies have shown that iron-sulfur clusters hosted by cysteine residues in proteins are readily disrupted by nitric oxide forming a protein-bound dinitrosyl iron complex, thiolate-bridged di-iron tetranitrosyl complex, or octanitrosyl cluster. Here we report that human mitochondrial protein Miner2 [2Fe-2S] clusters can bind nitric oxide without disruption of the clusters. Miner2 is a member of a new CDGSH iron-sulfur protein family that also includes two mitochondrial proteins: the type II diabetes-related mitoNEET and the Wolfram syndrome 2-linked Miner1. Miner2 contains two CDGSH motifs, and each CDGSH motif hosts a [2Fe-2S] cluster via three cysteine and one histidine residues. Binding of nitric oxide in the reduced Miner2 [2Fe-2S] clusters produces a major absorption peak at 422 nm without releasing iron or sulfide from the clusters. The EPR measurements and mass spectrometry analyses further reveal that nitric oxide binds to the reduced [2Fe-2S] clusters in Miner2, with each cluster binding one nitric oxide. Although the [2Fe-2S] cluster in purified human mitoNEET and Miner1 fails to bind nitric oxide, a single mutation of Asp-96 to Val in mitoNEET or Asp-123 to Val in Miner1 facilitates nitric oxide binding in the [2Fe-2S] cluster, indicating that a subtle change of protein structure may switch mitoNEET and Miner1 to bind nitric oxide. The results suggest that binding of nitric oxide in the CDGSH-type [2Fe-2S] clusters in mitochondrial protein Miner2 may represent a new nitric oxide signaling mode in cells.

SUBMITTER: Cheng Z 

PROVIDER: S-EPMC5336151 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

Binding of Nitric Oxide in CDGSH-type [2Fe-2S] Clusters of the Human Mitochondrial Protein Miner2.

Cheng Zishuo Z   Landry Aaron P AP   Wang Yiming Y   Ding Huangen H  

The Journal of biological chemistry 20170112 8


Iron-sulfur proteins are among the primary targets of nitric oxide in cells. Previous studies have shown that iron-sulfur clusters hosted by cysteine residues in proteins are readily disrupted by nitric oxide forming a protein-bound dinitrosyl iron complex, thiolate-bridged di-iron tetranitrosyl complex, or octanitrosyl cluster. Here we report that human mitochondrial protein Miner2 [2Fe-2S] clusters can bind nitric oxide without disruption of the clusters. Miner2 is a member of a new CDGSH iron  ...[more]

Similar Datasets

| S-EPMC134991 | biostudies-literature
| S-EPMC2373747 | biostudies-literature
| S-EPMC5209285 | biostudies-literature
| S-EPMC8851467 | biostudies-literature
| S-EPMC7730481 | biostudies-literature
| S-EPMC8007109 | biostudies-literature
| S-EPMC3132287 | biostudies-literature
| S-EPMC5266532 | biostudies-literature
| S-EPMC8463382 | biostudies-literature
| S-EPMC1963346 | biostudies-literature