Molecular and serological evidence of flea-associated typhus group and spotted fever group rickettsial infections in Madagascar.
Ontology highlight
ABSTRACT: Rickettsiae are obligate intracellular bacteria responsible for many febrile syndromes around the world, including in sub-Saharan Africa. Vectors of these pathogens include ticks, lice, mites and fleas. In order to assess exposure to flea-associated Rickettsia species in Madagascar, human and small mammal samples from an urban and a rural area, and their associated fleas were tested.Anti-typhus group (TGR)- and anti-spotted fever group rickettsiae (SFGR)-specific IgG were detected in 24 (39%) and 21 (34%) of 62 human serum samples, respectively, using indirect ELISAs, with six individuals seropositive for both. Only two (2%) Rattus rattus out of 86 small mammals presented antibodies against TGR. Out of 117 fleas collected from small mammals, Rickettsia typhi, a TGR, was detected in 26 Xenopsylla cheopis (24%) collected from rodents of an urban area (n?=?107), while two of these urban X. cheopis (2%) were positive for Rickettsia felis, a SFGR. R. felis DNA was also detected in eight (31%) out of 26 Pulex irritans fleas.The general population in Madagascar are exposed to rickettsiae, and two flea-associated Rickettsia pathogens, R. typhi and R. felis, are present near or in homes. Although our results are from a single district, they demonstrate that rickettsiae should be considered as potential agents of undifferentiated fever in Madagascar.
<h4>Background</h4>Rickettsiae are obligate intracellular bacteria responsible for many febrile syndromes around the world, including in sub-Saharan Africa. Vectors of these pathogens include ticks, lice, mites and fleas. In order to assess exposure to flea-associated Rickettsia species in Madagascar, human and small mammal samples from an urban and a rural area, and their associated fleas were tested.<h4>Results</h4>Anti-typhus group (TGR)- and anti-spotted fever group rickettsiae (SFGR)-specif ...[more]
Project description:Rickettsioses are arthropod-borne zoonotic diseases, several of which occur in Australia. This study aimed to assess the exposure levels and risk factors for Rickettsia spp. among Australian wildlife rehabilitators (AWRs) using serology, PCR and a questionnaire. Antibody titres against Spotted Fever Group (SFG), Typhus Group (TG) and Scrub Typhus Group (STG) antigens were determined using an immunofluorescence assay. PCR targeting the gltA gene was performed on DNA extracts from whole blood and serum. Logistic regression was used to identify risk factors associated with seropositivity. Of the 27 (22.1%; 27/122) seropositive participants all were seropositive for SFG, with 5/27 (4.1%) also positive for TG. Of the 27 positive sera, 14.8% (4/27) were further classified as exposure to R. australis, 3.7% (1/27) to R. honei, 3.7% (1/27) to R. felis and 77.8% (21/27) were classified as 'indeterminate'-most of which (85.7%; 18/21) were indeterminate R. australis/R. honei exposures. Rickettsia DNA was not detected in whole blood or serum. Rehabilitators were more likely to be seropositive if more than one household member rehabilitated wildlife, were older than 50 years or had occupational animal contact. These findings suggest that AWRs are at increased risk of contracting Rickettsia-related illnesses, however the source of the increased seropositivity remains unclear.
Project description:A seroprevalence study for IgG antibodies against spotted fever group (SFGR) and typhus group (TGR) Rickettsia among humans and domestic pets was conducted in the city of Iquitos, located in the Amazon basin of Peru. Of 1,195 human sera analyzed, 521 (43.6%) and 123 (10.3%) were positive for SFGR and TGR antibodies, respectively. District of residence and participant age were associated with antibody positivity for both groups, whereas rodent sightings in the home were associated with TGR antibody positivity. Of the 71 canines tested, 42 (59.2%) were positive for SFGR antibodies, and two (2.8%) were positive for TGR antibodies; one active SFGR infection was detected by polymerase chain reaction. An uncharacterized SFGR species was detected in 95.9% (71/74) of Ctenocephalides felis pools collected from domestic pets. These data suggest that rickettsial transmission is widespread in Iquitos. Rickettsia species should be further explored as potential causes of acute febrile illnesses in the region.
Project description:The presence of the nucleic acid of the spotted fever group (SPG) and typhus group (TG) rickettsiae was investigated in 200 serum specimens seropositive for SFG rickettsiae by multiplex-nested polymerase chain reaction with primers derived from the rickettsial outer membrane protein B gene. The DNA of SFG, TG, or both rickettsiae was amplified in the 24 serum specimens, and sequence analysis showed Rickettsia conorii, R. japonica, and R. felis in the specimens. R. conorii and R. typhi were found in 7 serum specimens, which indicated the possibility of dual infection in these patients. These findings suggest that several kinds of rickettsial diseases, including boutonneuse fever, rickettsialpox, R. felis infection, and Japanese spotted fever, as well as scrub typhus and murine typhus, are occurring in Korea.
Project description:Scrub typhus and spotted fever rickettsioses (SFR) are understudied, vector-borne diseases of global significance. Over 1 billion individuals are at risk for scrub typhus alone in an endemic region, spanning across eastern and southern Asia to Northern Australia. While highly treatable, diagnostic challenges make timely antibiotic intervention difficult for these diseases. Delayed therapy may lead to severe outcomes affecting multiple organs, including the central nervous system (CNS), where infection and associated neuroinflammation may be lethal or lead to lasting sequelae. Meningitis and encephalitis are prevalent in both scrub typhus and SFR. Additionally, case reports detailing focal neurological deficits have come to light, with attention to both acute and chronic sequelae of infection. Despite the increasing number of clinical reports outlining neurologic consequences of these diseases, relatively little research has examined underlying mechanisms of neuroinflammation. Animal models of scrub typhus have identified cerebral T-cell infiltration and vascular damage associated with endothelial infection and neuropathogenesis. Differential gene expression analysis of brain tissues during murine scrub typhus have revealed selective increases in CXCR3 ligands, proinflammatory and type-1 cytokines and chemokines, and cytotoxicity molecules, as well as alterations in the complement pathway. In SFR, microglial expansion and macrophage infiltration contribute to neurological disease progression. This narrative Review highlights clinical neurologic features of scrub typhus and SFR and evaluates our current understanding of basic research into neuroinflammation for both diseases in animal models. Further investigation into key mediators of neuropathogenesis may yield prognostic markers and treatment regimens for severe patients.
Project description:Talin and vinculin, both actin-cytoskeleton-related proteins, have been documented to participate in establishing bacterial infections, respectively, as the adapter protein to mediate cytoskeleton-driven dynamics of the plasma membrane. However, little is known regarding the potential role of the talin-vinculin complex during spotted fever group rickettsial and Ebola virus infections, two dreadful infectious diseases in humans. Many functional properties of proteins are determined by their participation in protein-protein complexes, in a temporal and/or spatial manner. To resolve the limitation of application in using mouse primary antibodies on archival, multiple formalin-fixed mouse tissue samples, which were collected from experiments requiring high biocontainment, we developed a practical strategic proximity ligation assay (PLA) capable of employing one primary antibody raised in mouse to probe talin-vinculin spatial proximal complex in mouse tissue. We observed an increase of talin-vinculin spatial proximities in the livers of spotted fever Rickettsia australis or Ebola virus-infected mice when compared with mock mice. Furthermore, using EPAC1-knockout mice, we found that deletion of EPAC1 could suppress the formation of spatial proximal complex of talin-vinculin in rickettsial infections. In addition, we observed increased colocalization between spatial proximity of talin-vinculin and filamentous actin-specific phalloidin staining in single survival mouse from an ordinarily lethal dose of rickettsial or Ebola virus infection. These findings may help to delineate a fresh insight into the mechanisms underlying liver specific pathogenesis during infection with spotted fever rickettsia or Ebola virus in the mouse model.
Project description:ObjectiveMurine typhus has been increasingly reported on Reunion island, Indian ocean, following documentation of eight autochthonous infections in 2012-2013. We conducted a serosurvey to assess the magnitude of the seroprevalence of rickettsioses in the population. Two hundred and forty-one stored frozen sera taken from the 2009 Copanflu-RUN cohort were analysed using an immunofluorescence assay allowing to distinguish typhus group (TGR) and spotted fever group Rickesttsiae (SFGR). Seropositivity was defined for a dilution titre of Rickettsia IgG antibodies ≥ 1:64. Seroprevalence was weighted to account for the discrepancy between the Copanflu-RUN subset and the general population, as to infer prevalence at community level. Prevalence proportion ratios (PPR) were measured using log-binomial models.ResultsThe weighted seroprevalences of typhus group rickettsioses and spotted fever group rickettsioses were of 12.71% (95% CI 8.84-16.58%) and 17.68% (95% CI 13.25-22.11%), respectively. Pooled together, data suggested that a fifth of the population had been exposed at least to one Rickettsia group. Youths (< 20 years) were less likely seropositive than adults (adjusted PPR 0.13, 95% CI 0.01-0.91). People living in the western dryer part of the island were more exposed (adjusted PPR 2.53, 95% CI 1.07-5.97). Rickettsioses are endemic on Reunion island and circulated before their first identification as murine typhus in year 2011. Surprisingly, since isolation of Rickettsia africae from Amblyomma variegatum in year 2004 or isolation of Rickettsia felis from Amblyomma loculosum, no autochthonous cases of African tick-bite fever or flea-borne spotted fever has yet been diagnosed.
Project description:Limited information is available on the etiological agents of rickettsioses in southeast Asia. Herein, we report the molecular investigation of rickettsioses in four patients attending a teaching hospital in Malaysia. DNA of Rickettsia sp. RF2125, Rickettsia typhi, and a rickettsia closely related to Rickettsia raoultii was detected in the blood samples of the patients. Spotted fever group rickettsioses and murine typhus should be considered in the diagnosis of patients with nonspecific febrile illness in this region.
Project description:We found serologic evidence of spotted fever group Rickettsia in humans and dogs and typhus group Rickettsia in dogs in Reynosa, Mexico. Our investigation revealed serologic samples reactive to spotted fever group Rickettsia in 5 community members, which highlights a potential rickettsial transmission scenario in this region.
Project description:Evidence of spotted fever group (SFG) rickettsiae was obtained from flea pools and individual ticks collected at three sites in northwestern Peru within the focus of an outbreak of febrile disease in humans attributed, in part, to SFG rickettsia infections. Molecular identification of the etiologic agents from these samples was determined after partial sequencing of the 17-kDa common antigen gene (htrA) as well as pairwise nucleotide sequence homology with one or more of the following genes: gltA, ompA, and ompB. Amplification and sequencing of portions of the htrA and ompA genes in pooled samples (2 of 59) taken from fleas identified the pathogen Rickettsia felis. Four tick samples yielded molecular evidence of SFG rickettsiae. Fragments of the ompA (540-bp) and ompB (2,484-bp) genes were amplified from a single Amblyomma maculatum tick (tick 124) and an Ixodes boliviensis tick (tick 163). The phylogenetic relationships between the rickettsiae in these samples and other rickettsiae were determined after comparison of their ompB sequences by the neighbor-joining method. The dendrograms generated showed that the isolates exhibited close homology (97%) to R. aeschlimannii and R. rhipicephali. Significant bootstrap values supported clustering adjacent to this nodule of the SFG rickettsiae. While the agents identified in the flea and tick samples have not been linked to human cases in the area, these results demonstrate for the first time that at least two SFG rickettsia agents were circulating in northern Peru at the time of the outbreak. Furthermore, molecular analysis of sequences derived from the two separate species of hard ticks identified a possibly novel member of the SFG rickettsiae.
Project description:Mediterranean spotted fever is a reemerging acute tick-borne infection produced by the ?-proteobacterium, Rickettsia conorii. Rickettsia conorii infects vascular endothelial cells producing disseminated plasma leakage, manifesting as nonspecific fever, headache, and maculopapular rash. Because there are no available tests of early infection, Mediterranean spotted fever is often undiagnosed and untreated, resulting in significant mortality. To address this critical need, we have applied a quantitative proteomics pipeline for analyzing the secretome of primary human umbilical vein endothelial cells. Of the 104 proteins whose abundance changed significantly in the R. conorii-infected human umbilical vein endothelial cells' secretome, 46 proteins were up-regulated: 45 were host secreted proteins (including cytokines), and 1 was a rickettsial protein, the putative N-acetylmuramoyl-l-alanine amidase RC0497. Proteins with sequence highly homologous to RC0497 were found to be shared by many species of the spotted fever group rickettsiae, but not typhus group rickettsiae. Quantitative targeted proteomics studies of plasma from a mouse model of sublethal and lethal R. conorii identified RC0497 in the blood, and its circulating levels were proportionally associated with infection outcome. Finally, the presence of RC0497 in the serum samples from a cohort of humans presenting with acute rickettsioses was confirmed. The detection of RC0497 has the potential to be a sensitive and specific marker for acute rickettsial spotted rickettsioses.