Granulocyte colony-stimulating factor (G-CSF) upregulates ?1 integrin and increases migration of human trophoblast Swan 71 cells via PI3K and MAPK activation.
Ontology highlight
ABSTRACT: Multiple cytokines and growth factors expressed at the fetal-maternal interface are involved in the regulation of trophoblast functions and placental growth, but the role of G-CSF has not been completely established. Based on our previous study showing that G-CSF increases the activity of matrix metalloproteinase-2 and the release of vascular endothelial growth factor in Swan 71 human trophoblast cells, in this work we explore the possible contribution of G-CSF to cell migration and the G-CSF-triggered signaling pathway. We found that G-CSF induced morphological changes on actin cytoskeleton consistent with a migratory cell phenotype. G-CSF also up-regulated the expression levels of ?1 integrin and promoted Swan 71 cell migration. By using selective pharmacological inhibitors and dominant negative mutants we showed that PI3K, Erk 1/2 and p38 pathways are required for promoting Swan 71 cell motility. It was also demonstrated that PI3K behaved as an upstream regulator of Erk 1/2 and p38 MAPK. In addition, the increase of ?1 integrin expression was dependent on PI3K activation. In conclusion, our results indicate that G-CSF stimulates ?1 integrin expression and Swan 71 cell migration by activating PI3K and MAPK signaling pathways, suggesting that G-CSF should be considered as an additional regulatory factor that contributes to a successful embryo implantation and to the placenta development.
SUBMITTER: Furmento VA
PROVIDER: S-EPMC5338037 | biostudies-literature | 2016 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA