Project description:A classic thesis is that scientific achievement exhibits a "Matthew effect": Scientists who have previously been successful are more likely to succeed again, producing increasing distinction. We investigate to what extent the Matthew effect drives the allocation of research funds. To this end, we assembled a dataset containing all review scores and funding decisions of grant proposals submitted by recent PhDs in a €2 billion granting program. Analyses of review scores reveal that early funding success introduces a growing rift, with winners just above the funding threshold accumulating more than twice as much research funding (€180,000) during the following eight years as nonwinners just below it. We find no evidence that winners' improved funding chances in subsequent competitions are due to achievements enabled by the preceding grant, which suggests that early funding itself is an asset for acquiring later funding. Surprisingly, however, the emergent funding gap is partly created by applicants, who, after failing to win one grant, apply for another grant less often.
Project description:Hurricane Matthew was the deadliest Atlantic storm since Katrina in 2005 and prompted one of the largest recent hurricane evacuations along the Southeastern coast of the United States. The storm and its projected landfall triggered a massive social media reaction. Using Twitter data, this paper examines the spatiotemporal variability in social media response and develops a novel approach to leverage geotagged tweets to assess the evacuation responses of residents. The approach involves the retrieval of tweets from the Twitter Stream, the creation and filtering of different datasets, and the statistical and spatial processing and treatment to extract, plot and map the results. As expected, peak Twitter response was reached during the pre-impact and preparedness phase, and decreased abruptly after the passage of the storm. A comparison between two time periods-pre-evacuation (October 2th-4th) and post-evacuation (October 7th-9th)-indicates that 54% of Twitter users moved away from the coast to a safer location, with observed differences by state on the timing of the evacuation. A specific sub-state analysis of South Carolina illustrated overall compliance with evacuation orders and detailed information on the timing of departure from the coast as well as the destination location. These findings advance the use of big data and citizen-as-sensor approaches for public safety issues, providing an effective and near real-time alternative for measuring compliance with evacuation orders.
Project description:To foster a deeper understanding of the mechanisms behind inequality in society, it is crucial to work with well-defined concepts associated with such mechanisms. The aim of this paper is to define cumulative (dis)advantage and the Matthew effect. We argue that cumulative (dis)advantage is an intra-individual micro-level phenomenon, that the Matthew effect is an inter-individual macro-level phenomenon and that an appropriate measure of the Matthew effect focuses on the mechanism or dynamic process that generates inequality. The Matthew mechanism is, therefore, a better name for the phenomenon, where we provide a novel measure of the mechanism, including a proof-of-principle analysis using disposable personal income data. Finally, because socio-economic theory should be able to explain cumulative (dis)advantage and the Matthew mechanism when they are detected in data, we discuss the types of models that may explain the phenomena. We argue that interactions-based models in the literature traditions of analytical sociology and statistical mechanics serve this purpose.
Project description:Computational models of cholera transmission can provide objective insights into the course of an ongoing epidemic and aid decision making on allocation of health care resources. However, models are typically designed, calibrated and interpreted post-hoc. Here, we report the efforts of a team from academia, field research and humanitarian organizations to model in near real-time the Haitian cholera outbreak after Hurricane Matthew in October 2016, to assess risk and to quantitatively estimate the efficacy of a then ongoing vaccination campaign. A rainfall-driven, spatially-explicit meta-community model of cholera transmission was coupled to a data assimilation scheme for computing short-term projections of the epidemic in near real-time. The model was used to forecast cholera incidence for the months after the passage of the hurricane (October-December 2016) and to predict the impact of a planned oral cholera vaccination campaign. Our first projection, from October 29 to December 31, predicted the highest incidence in the departments of Grande Anse and Sud, accounting for about 45% of the total cases in Haiti. The projection included a second peak in cholera incidence in early December largely driven by heavy rainfall forecasts, confirming the urgency for rapid intervention. A second projection (from November 12 to December 31) used updated rainfall forecasts to estimate that 835 cases would be averted by vaccinations in Grande Anse (90% Prediction Interval [PI] 476-1284) and 995 in Sud (90% PI 508-2043). The experience gained by this modeling effort shows that state-of-the-art computational modeling and data-assimilation methods can produce informative near real-time projections of cholera incidence. Collaboration among modelers and field epidemiologists is indispensable to gain fast access to field data and to translate model results into operational recommendations for emergency management during an outbreak. Future efforts should thus draw together multi-disciplinary teams to ensure model outputs are appropriately based, interpreted and communicated.
Project description:The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St. Matthew: "For to all those who have, more will be given." Even two millennia later, this idiom is used by sociologists to qualitatively describe the dynamics of individual progress and the interplay between status and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in measuring progress and the lack of data on individual careers. However, in some professions, there are well-defined metrics that quantify career longevity, success, and prowess, which together contribute to the overall success rating for an individual employee. Here we demonstrate testable evidence of the age-old Matthew "rich get richer" effect, wherein the longevity and past success of an individual lead to a cumulative advantage in further developing his or her career. We develop an exactly solvable stochastic career progress model that quantitatively incorporates the Matthew effect and validate our model predictions for several competitive professions. We test our model on the careers of 400,000 scientists using data from six high-impact journals and further confirm our findings by testing the model on the careers of more than 20,000 athletes in four sports leagues. Our model highlights the importance of early career development, showing that many careers are stunted by the relative disadvantage associated with inexperience.