Unknown

Dataset Information

0

The Podospora anserina lytic polysaccharide monooxygenase PaLPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans.


ABSTRACT: BACKGROUND:The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMO) that catalyze oxidative cleavage of polysaccharides. These powerful enzymes are secreted by a large number of fungal saprotrophs and are important components of commercial enzyme cocktails used for industrial biomass conversion. Among the 33 AA9 LPMOs encoded by the genome of Podospora anserina, the PaLPMO9H enzyme catalyzes mixed C1/C4 oxidative cleavage of cellulose and cello-oligosaccharides. Activity of PaLPMO9H on several hemicelluloses has been suggested, but the regioselectivity of the cleavage remained to be determined. RESULTS:In this study, we investigated the activity of PaLPMO9H on mixed-linkage glucans, xyloglucan and glucomannan using tandem mass spectrometry and ion mobility-mass spectrometry. Structural analysis of the released products revealed that PaLPMO9H catalyzes C4 oxidative cleavage of mixed-linkage glucans and mixed C1/C4 oxidative cleavage of glucomannan and xyloglucan. Gem-diols and ketones were produced at the non-reducing end, while aldonic acids were produced at the reducing extremity of the products. CONCLUSION:The ability of PaLPMO9H to target polysaccharides, differing from cellulose by their linkages, glycosidic composition and/or presence of sidechains, could be advantageous for this coprophilous fungus when catabolizing highly variable polysaccharides and for the development of optimized enzyme cocktails in biorefineries.

SUBMITTER: Fanuel M 

PROVIDER: S-EPMC5346257 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

The <i>Podospora anserina</i> lytic polysaccharide monooxygenase <i>Pa</i>LPMO9H catalyzes oxidative cleavage of diverse plant cell wall matrix glycans.

Fanuel Mathieu M   Garajova Sona S   Ropartz David D   McGregor Nicholas N   Brumer Harry H   Rogniaux Hélène H   Berrin Jean-Guy JG  

Biotechnology for biofuels 20170311


<h4>Background</h4>The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMO) that catalyze oxidative cleavage of polysaccharides. These powerful enzymes are secreted by a large number of fungal saprotrophs and are important components of commercial enzyme cocktails used for industrial biomass conversion. Among the 33 AA9 LPMOs encoded by the genome of <i>Podospora anserina</i>, the <i>Pa</i>LPMO9H enzyme catalyzes mi  ...[more]

Similar Datasets

| S-EPMC4487207 | biostudies-literature
| S-EPMC3553762 | biostudies-literature
| S-EPMC6648734 | biostudies-literature
| S-EPMC6894463 | biostudies-literature
| S-EPMC5787815 | biostudies-literature
| S-EPMC6404106 | biostudies-literature
| S-EPMC7072406 | biostudies-literature
| S-EPMC7078924 | biostudies-literature
| S-EPMC5651836 | biostudies-literature
| S-EPMC6334667 | biostudies-literature