Cisplatin-induced synthetic lethality to arginine-starvation therapy by transcriptional suppression of ASS1 is regulated by DEC1, HIF-1?, and c-Myc transcription network and is independent of ASS1 promoter DNA methylation.
Ontology highlight
ABSTRACT: Many human tumors require extracellular arginine (Arg) for growth because the key enzyme for de novo biosynthesis of Arg, argininosuccinate synthetase 1 (ASS1), is silenced. These tumors are sensitive to Arg-starvation therapy using pegylated arginine deiminase (ADI-PEG20) which digests extracellular Arg. Many previous studies reported that ASS1 silencing is due to epigenetic inactivation of ASS1 expression by DNA methylation, and that the demethylation agent 5-aza-deoxycytidine (Aza-dC) can induce ASS1 expression. Moreover, it was reported that cisplatin suppresses ASS1 expression through ASS1 promoter methylation, leading to synthetic lethality to ADI-PEG20 treatment. We report here that cisplatin supppresses ASS1 expression is due to upregulation of HIF-1? and downregulation of c-Myc, which function as negative and positive regulators of ASS1 expression, respectively, by reciprocal bindings to the ASS1 promoter. In contrast, we found that Aza-dC induces ASS1 expression by downregulation of HIF-1? but upregulation of c-Myc. We further demonstrated that the clock protein DEC1 is the master regulator of HIF-1? and c-Myc that regulate ASS1. cDDP upregulates DEC1, whereas Aza-dC suppresses its expression. Using two proteasomal inhibitors bortezomib and carfilzomib which induce HIF-1? accumulation, we further demonstrated that HIF-1? is involved in ASS1 silencing for the maintenance of Arg auxotrophy for targeted Arg-starvation therapy.
SUBMITTER: Long Y
PROVIDER: S-EPMC5347722 | biostudies-literature | 2016 Dec
REPOSITORIES: biostudies-literature
ACCESS DATA