Unknown

Dataset Information

0

Phosphate Limitation Triggers the Dissolution of Precipitated Iron by the Marine Bacterium Pseudovibrio sp. FO-BEG1.


ABSTRACT: Phosphorus is an essential nutrient for all living organisms. In bacteria, the preferential phosphorus source is phosphate, which is often a limiting macronutrient in many areas of the ocean. The geochemical cycle of phosphorus is strongly interconnected with the cycles of other elements and especially iron, because phosphate tends to adsorb onto iron minerals, such as iron oxide formed in oxic marine environments. Although the response to either iron or phosphate limitation has been investigated in several bacterial species, the metabolic interplay between these two nutrients has rarely been considered. In this study we evaluated the impact of phosphate limitation on the iron metabolism of the marine bacterium Pseudovibrio sp. FO-BEG1. We observed that phosphate limitation led to an initial decrease of soluble iron in the culture up to three times higher than under phosphate surplus conditions. Similarly, a decrease in soluble cobalt was more pronounced under phosphate limitation. These data point toward physiological changes induced by phosphate limitation that affect either the cellular surface and therefore the metal adsorption onto it or the cellular metal uptake. We discovered that under phosphate limitation strain FO-BEG1, as well as selected strains of the Roseobacter clade, secreted iron-chelating molecules. This leads to the hypothesis that these bacteria might release such molecules to dissolve iron minerals, such as iron-oxyhydroxide, in order to access the adsorbed phosphate. As the adsorption of phosphate onto iron minerals can significantly decrease phosphate concentrations in the environment, the observed release of iron-chelators might represent an as yet unrecognized link between the biogeochemical cycle of phosphorus and iron, and it suggests another biological function of iron-chelating molecules in addition to metal-scavenging.

SUBMITTER: Romano S 

PROVIDER: S-EPMC5348524 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Phosphate Limitation Triggers the Dissolution of Precipitated Iron by the Marine Bacterium <i>Pseudovibrio</i> sp. FO-BEG1.

Romano Stefano S   Bondarev Vladimir V   Kölling Martin M   Dittmar Thorsten T   Schulz-Vogt Heide N HN  

Frontiers in microbiology 20170314


Phosphorus is an essential nutrient for all living organisms. In bacteria, the preferential phosphorus source is phosphate, which is often a limiting macronutrient in many areas of the ocean. The geochemical cycle of phosphorus is strongly interconnected with the cycles of other elements and especially iron, because phosphate tends to adsorb onto iron minerals, such as iron oxide formed in oxic marine environments. Although the response to either iron or phosphate limitation has been investigate  ...[more]

Similar Datasets

| S-EPMC4008564 | biostudies-literature
| S-EPMC4407226 | biostudies-literature
2016-06-24 | PXD001624 | Pride
2016-06-24 | PXD001621 | Pride
| S-EPMC2864753 | biostudies-literature
| S-EPMC3759054 | biostudies-other
| PRJNA73563 | ENA
| S-EPMC4962634 | biostudies-literature
| S-EPMC3164381 | biostudies-literature
| S-EPMC4278209 | biostudies-literature