Unknown

Dataset Information

0

Osteoblastic Lrp4 promotes osteoclastogenesis by regulating ATP release and adenosine-A2AR signaling.


ABSTRACT: Bone homeostasis depends on the functional balance of osteoblasts (OBs) and osteoclasts (OCs). Lrp4 is a transmembrane protein that is mutated in patients with high bone mass. Loss of Lrp4 in OB-lineage cells increases bone mass by elevating bone formation by OBs and reducing bone resorption by OCs. However, it is unclear how Lrp4 deficiency in OBs impairs osteoclastogenesis. Here, we provide evidence that loss of Lrp4 in the OB lineage stabilizes the prorenin receptor (PRR) and increases PRR/V-ATPase-driven ATP release, thereby enhancing the production of the ATP derivative adenosine. Both pharmacological and genetic inhibition of adenosine-2A receptor (A2AR) in culture and Lrp4 mutant mice diminishes the osteoclastogenic deficit and reduces trabecular bone mass. Furthermore, elevated adenosine-A2AR signaling reduces receptor activator of nuclear factor ?B (RANK)-mediated osteoclastogenesis. Collectively, these results identify a mechanism by which osteoblastic Lrp4 controls osteoclastogenesis, reveal a cross talk between A2AR and RANK signaling in osteoclastogenesis, and uncover an unrecognized pathophysiological mechanism of high-bone-mass disorders.

SUBMITTER: Xiong L 

PROVIDER: S-EPMC5350517 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Osteoblastic Lrp4 promotes osteoclastogenesis by regulating ATP release and adenosine-A<sub>2A</sub>R signaling.

Xiong Lei L   Jung Ji-Ung JU   Guo Hao-Han HH   Pan Jin-Xiu JX   Sun Xiang-Dong XD   Mei Lin L   Xiong Wen-Cheng WC  

The Journal of cell biology 20170213 3


Bone homeostasis depends on the functional balance of osteoblasts (OBs) and osteoclasts (OCs). Lrp4 is a transmembrane protein that is mutated in patients with high bone mass. Loss of Lrp4 in OB-lineage cells increases bone mass by elevating bone formation by OBs and reducing bone resorption by OCs. However, it is unclear how Lrp4 deficiency in OBs impairs osteoclastogenesis. Here, we provide evidence that loss of Lrp4 in the OB lineage stabilizes the prorenin receptor (PRR) and increases PRR/V-  ...[more]

Similar Datasets

| S-EPMC5742060 | biostudies-literature
| S-EPMC6715785 | biostudies-literature
| S-EPMC9899190 | biostudies-literature
| S-EPMC4371963 | biostudies-literature
| S-EPMC9101264 | biostudies-literature
| S-EPMC9391554 | biostudies-literature
| S-EPMC8322233 | biostudies-literature
| S-EPMC7415152 | biostudies-literature
| S-EPMC5432479 | biostudies-literature
| S-EPMC3341061 | biostudies-literature