LASS2 inhibits growth and invasion of bladder cancer by regulating ATPase activity.
Ontology highlight
ABSTRACT: Homo sapiens longevity assurance homolog 2 of yeast LAG1 (LASS2) is a novel suppressor of human cancer metastasis, and downregulation of LASS2 has been associated with a poor prognosis in patients with bladder cancer (BC). However, the molecular mechanism underlying LASS2-mediated inhibition of tumor invasion and metastasis in BC remains unclear. LASS2 has been reported to directly bind to subunit C of vacuolar H+-ATPase (V-ATPase) in various types of cancer, suggesting that LASS2 may inhibit cancer invasion and metastasis by regulating the function of V-ATPase. The present study investigated the effect of LASS2-specific small interfering (si)RNA on the invasion and metastasis of the RT4 human BC cell line, which has a low metastatic potential, and its functional interaction with V-ATPase. Silencing of LASS2 in RT4 cells was able to increase V-ATPase activity, the extracellular hydrogen ion concentration and, in turn, the activation of secreted matrix metalloproteinase (MMP)-2 and MMP-9, which occurred simultaneously with enhanced cell proliferation, cell survival and cell invasion in vitro, as well as acceleration of BC growth in vivo. In this process, it was found that siRNA-LASS2 treatment was able to suppress cell apoptosis induced by doxorubicin. These findings suggest that silencing of LASS2 may enhance the growth, invasion and metastasis of BC by regulating ATPase activity.
Project description:Mitochondria coordinated a lot of vital cellular processes of energy production and distribution. Change of mitochondrial functions has been implicated in cancer progression. The present study aims to investigate the involvement of mitochondria dynamics in LASS2 induced invasion and chemoresistance of bladder cancer cells. J82 and BIU87 cell lines were used for LASS2 plasmid transfection while siRNA knockdown was carried out in 5637 cell line. Matrigel invasion assay and Annexin V/PI staining demonstrated that LASS2 negatively regulated cancer cell invasion and chemoresistance. JC-1 staining suggested that LASS2 overexpression downregulated mitochondrial membrane potential. Mitotracker staining showed that LASS2 induced mitochondrial fusion and inhibited mitochondrial fission. In addition, LASS2 overexpression downregulated expression of mitochondrial fission protein p-Drp1 Drp1 and Fis1. While depletion of LASS2 exhibited the opposite effects. Drp1 inhibitor Mdivi abolished invasion and chemoresistance induced by LASS2 siRNA. Furthermore, we found that LASS2 overexpression could inhibit phosphorylation of ERK, which act upstream of Drp1. ERK inhibitor PD98059 suppressed Drp1 phosphorylation and abrogated the effects of LASS2 depletion. In conclusion, the present study demonstrated that LASS2 inhibits bladder cancer invasion and chemoresistance through regulation of ERK-Drp1 induced mitochondrial dynamics.
Project description:Human 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) is the gene identified from adipose tissue in 2007. We found AGPAT9 expression was significantly higher in poorly invasive MCF7 human breast cancer cells than the highly invasive MDA-MB-231 cells. AGPAT9 significantly inhibited the proliferation of breast cancer cells in vitro and in vivo. Live-cell imaging and transwell assays showed that AGPAT9 could significantly inhibit the migration and invasive capacities of breast cancer cells. The inhibitory effect of AGPAT9 on metastasis was also observed in vivo in lung metastasis model. AGPAT9 inhibited breast cancer cell proliferation, migration and invasion through, at least in part, suppressing the V-ATPase activity. In addition, increased AGPAT9 expression in MCF-7/ADR cells could increase the chemosensitivity to doxorubicin (Dox). Our findings suggest that increasing AGPAT9 expression may be a new approach that can be used for breast cancer treatment.
Project description:Emodin exhibits anti-proliferative effects in numerous cancer cell lines via different mechanisms. The present study aimed to study the effects and underlying molecular mechanisms of emodin on bladder cancer cells. We treated two bladder cancer cell lines, T24 and 5637, with different concentrations of emodin (20, 40 and 80 µmol/L) or DMSO (Control). We analyzed the biological effects of emodin on cell growth, invasion, as well as the mRNA and protein expression of Notch1, Jagged1, VEGF, VEGFR2 and MMP2 using Cell Counting Kit-8, transwell, reverse transcription-quantitative PCR and western blot assays. Emodin repressed cell growth, invasion and Notch1 expression in a concentration-dependent fashion. And Notch1 over-expression assay showed that the anti-proliferative and anti-invasive roles of emodin, along with the down-regulated effects on the expression of Notch1, Jagged1, VEGF, VEGFR2 and MMP2 were partially rescued by Notch1 over-expression. In conclusion, Emodin might suppress the progression of bladder cancer via inhibiting the expression of Notch1.
Project description:The epithelial-mesenchymal transition (EMT) serves vital roles in the angiogenesis, cell invasion and metastasis of various malignant tumors, including bladder cancer. Traditional Chinese medicinal herbs have been demonstrated to exhibit anticancer properties. The present study aimed to screen the sensitivity of bladder cancer to natural compounds by using six classic anti-inflammatory and detoxifying herbs, including the ethanol extract of Paris polyphylla (PPE), Scutellaria barbata, Pulsatillae decoction, Dahuang Huanglian Xiexin decoction, Bazhengsan and Hedyotis diffusa combined with S. barbata, were used to treat bladder cancer cells in vitro. Bladder cancer was more sensitive to PPE compared with the other tested herbs, and PPE significantly suppressed bladder cancer cell migration and invasion. Thus, the present study focused on PPE. Bladder cancer cells were treated with monomer components of PPE, including polyphyllin (PP) I, PPII, PPVI and PPVII. The results demonstrated that PPII treatment significantly inhibited cancer cell migration and invasion, increased the expression level of E-cadherin and decreased the levels of N-cadherin, snail family transcriptional repressor 2, twist family bHLH transcription factor 1, matrix metallopeptidase (MMP) 2 and MMP9 compared with those in the control group (untreated cells). These results suggested that PPII treatment may suppress bladder cancer cell migration and invasion by regulating the expression of EMT-associated genes and MMPs. Therefore, PPE and PPII may have antimetastatic effects and PPII may serve as a potential therapeutic option for inhibiting bladder cancer metastasis.
Project description:The FoxM1 (Forkhead Box M1) transcription factor plays a key role in regulation of cell growth, cell cycle, and transformation. Higher expression of FoxM1 has been observed in various types of human cancers including bladder cancer. However, the exact function of FoxM1 in bladder cancer has not been elucidated. To investigate the cellular and molecular function of FoxM1 in bladder cancer, we measured the consequences of downregulation and upregulation of FoxM1 in bladder cancer cells using MTT assay, wound healing assay, and invasion assay. We found that downregulation of FoxM1 inhibited cell growth, but induced apoptosis in bladder cancer cells. Moreover, we found that inhibition of FoxM1 retarded cell migration and invasion. In line with this, upregulation of FoxM1 led to cell growth promotion and inhibited cell apoptosis in bladder cancer cells. Consistently, upregulation of FoxM1 led to increased cell migration and invasion. Our Western blotting results identified that downregulation of FoxM1 increased p27 level and inhibited VEGF, while overexpression of FoxM1 reduced p27 level and increased VEGF. Our findings suggest that FoxM1 could be a useful target for the treatment of bladder cancer.
Project description:The highly conserved Hippo signaling pathway is one of the most important pathways involved in tumorigenesis and progress. Previous studies show that YAP, the transcriptional coactivator of Hippo pathway, is expressed highly in many clinical bladder cancer tissues and plays crucial role on bladder cancer progress. To find the YAP-specific target drug and its molecular mechanism in bladder cancer, we apply Verteporfin (VP), a YAP specific inhibitor to function as anti-bladder cancer drug and discover that VP is able to inhibit bladder cancer cell growth and invasion in a dosage dependent manner. Moreover, we demonstrate that VP may inhibit bladder cancer cell growth and invasion via repressing target genes' expression of the Hippo signaling pathway. In further study, we provide evidence that VP is able to inhibit excessive YAP induced bladder cancer cell growth and invasion. To address the repressive function of VP against YAP in bladder cancer, we check the target genes' expression and find VP can dramatically repress YAP overexpression induced Hippo pathway target genes' expression. Taken together, we discover that VP inhibits YAP-induced bladder cancer cell growth and invasion via repressing the target genes' expression of Hippo signaling pathway.
Project description:CXC chemokine receptor 7 (CXCR7) is highly expressed in various type of cancers and promotes cancer progression and metastasis. However, the biological role and regulation of CXCR7 in gastric cancer remains unclear, and little is known about compounds that modulate CXCR7. Here, we investigated the role of CXCR7 in gastric tumorigenesis, and the effects of decursin, which is derived from Angelica gigas Nakai, on CXCR7. Our results showed that CXCR7 significantly promoted growth of gastric cancer cells and increased migration and invasion, which was mediated by the STAT3/c-Myc pathway. We also confirmed that decursin had an antitumor effect through down-regulating the expression of CXCR7 in gastric cancer. Furthermore, apoptotic cell death was induced through the reduction of anti-apoptotic factors such as Bcl-2 in vitro and in vivo. Our findings show that CXCR7 in gastric cancer promotes cancer progression through the STAT3/c-Myc pathway and that decursin is a natural compound that may target CXCR7 in gastric cancer treatment.
Project description:Lung cancer remains the leading cause of cancer-related death worldwide. Previous studies have shown that the novel KIAA0247 gene potentially targeted by the tumor suppressor p53 may inhibit the development of several cancers. However, the exact function of KIAA0247 in non-small-cell lung cancer (NSCLC) is unknown. The purpose of the present study was to clarify the role of KIAA0247 in NSCLC. KIAA0247 expression was evaluated in tumors and adjacent normal tissues of 197 NSCLC patients by immunohistochemistry and real-time PCR and analyzed for association with clinicopathological parameters. Results indicated that KIAA0247 levels positively correlated with cell differentiation (P < .001) and patient survival (P < .0001) and negatively correlated with lymph node metastasis (P < .001) and advanced p-TNM stage (P < .001). In cultured NSCLC cell lines, KIAA0247 overexpression inhibited cell migration, invasion, and proliferation and downregulated the expression of Jagged1, Notch1 intracellular domain (NICD), Snail, cyclin D1, RhoA, RhoC, and MMP9, while upregulating that of E-cadherin and p21. The Notch inhibitor DAPT reduced the biological effects of KIAA0247 knockdown, suggesting that KIAA0247 decreased the carcinogenic activity of NSCLC cells through downregulation of Notch signaling. Our results indicate that KIAA0247 inhibits NSCLC progression by reducing the metastatic potential of cancer cells through downregulation of the Notch pathway, which may underlie the association of KIAA0247 expression with favorable clinicopathological characteristics of NSCLC patients. These findings suggest that KIAA0247 is a candidate prognostic biomarker and potential therapeutic target in NSCLC.
Project description:The antitumour effect of melittin (MEL) has recently attracted considerable attention. Nonetheless, information regarding the functional role of MEL in bladder cancer (BC) is currently limited. Herein, we investigated the effect of MEL on critical module genes identified in BC. In total, 2015 and 4679 differentially expressed genes (DEGs) associated with BC were identified from the GSE31189 set and The Cancer Genome Atlas database, respectively. GSE-identified DEGs were mapped and analysed using Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes analyses to determine BC-involved crucial genes and signal pathways. Coupled with protein-protein interaction network and Molecular Complex Detection analyses, Modules 2 and 4 were highlighted in the progression of BC. In in-vitro experiments, MEL inhibited the proliferation, migration, and invasion of UM-UC-3 and 5637 cells. The expression of NRAS, PAK2, EGFR and PAK1 in Module 4-enriched in the MAPK signalling pathway-was significantly reduced after treatment with MEL at concentrations of 4 or 6 μg/mL. Finally, quantitative reverse transcription-polymerase chain reaction and Western blotting analyses revealed MEL inhibited the expression of genes at the mRNA (ERK1/2, ERK5, JNK and MEK5), protein (ERK5, MEK5, JNK and ERK1/2) and phosphorylation (p-ERK1/2, p-JNK, and p-38) levels. This novel evidence indicates MEL exerts effects on the ERK5-MAK pathway-a branch of MAPK signalling pathway. Collectively, these findings provide a theoretical basis for MEL application in BC treatment.
Project description:BackgroundThe miRNA deregulation is commonly observed in human malignancies, where they act as tumour suppressors or oncogenes. Despite the association of several miRNAs with bladder cancer, little is known about the miRNAs that contribute to bladder cancer progression from non-muscle invasive (NMI) to muscle-invasive (MI) disease.MethodsWe first profiled the expression of miRNAs and mRNAs in a cohort of urothelial carcinomas and further characterised the role of miR-126 in invasion, as it emerged as the most downregulated miRNA between MI and NMI tumours.ResultsWe found that restoration of miR-126 levels attenuated the invasive potential of bladder cancer cells. Mechanistically, we identified the role of miR-126 in invasion through its ability to target ADAM9. Notably, a significant inverse correlation between miR-126 and ADAM9 expression was observed, where ADAM9 was upregulated in MI bladder cancer cells. While knockdown of ADAM9 attenuated the invasiveness of cells with low miR-126 levels, experimental upregulation of ADAM9 recapitulated the invasive phenotype. Furthermore, ADAM9 expression assessed by immunohistochemistry significantly correlated with poor prognosis in patients with urothelial carcinoma.ConclusionsIn this study we describe the role of miR-126 in bladder cancer progression, identifying miR-126 and ADAM9 as potential clinical biomarkers of disease aggressiveness.