Pathologic stratification of operable lung adenocarcinoma using radiomics features extracted from dual energy CT images.
Ontology highlight
ABSTRACT: PURPOSE:To evaluate the usefulness of surrogate biomarkers as predictors of histopathologic tumor grade and aggressiveness using radiomics data from dual-energy computed tomography (DECT), with the ultimate goal of accomplishing stratification of early-stage lung adenocarcinoma for optimal treatment. RESULTS:Pathologic grade was divided into grades 1, 2, and 3. Multinomial logistic regression analysis revealed i-uniformity and 97.5th percentile CT attenuation value as independent significant factors to stratify grade 2 or 3 from grade 1. The AUC value calculated from leave-one-out cross-validation procedure for discriminating grades 1, 2, and 3 was 0.9307 (95% CI: 0.8514-1), 0.8610 (95% CI: 0.7547-0.9672), and 0.8394 (95% CI: 0.7045-0.9743), respectively. MATERIALS AND METHODS:A total of 80 patients with 91 clinically and radiologically suspected stage I or II lung adenocarcinoma were prospectively enrolled. All patients underwent DECT and F-18-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, followed by surgery. Quantitative CT and PET imaging characteristics were evaluated using a radiomics approach. Significant features for a tumor aggressiveness prediction model were extracted and used to calculate diagnostic performance for predicting all pathologic grades. CONCLUSIONS:Quantitative radiomics values from DECT imaging metrics can help predict pathologic aggressiveness of lung adenocarcinoma.
SUBMITTER: Bae JM
PROVIDER: S-EPMC5352175 | biostudies-literature | 2017 Jan
REPOSITORIES: biostudies-literature
ACCESS DATA