ABSTRACT: Sepsis is a systemic inflammatory response to infection, with no preventative strategies. In this study, we identify a role for habitual physical activity in the prevention of adipose tissue inflammation induced by a model of sepsis, lipopolysaccharide (LPS). Male C57BL/6J mice (8 weeks old) were housed with access to voluntary wheel running (VWR) or sedentary (SED) for 10 weeks. Mice were then injected with LPS (2 mg/kg) or saline (SAL), and tissues were removed 6 hours post-injection. VWR attenuated body, epididymal adipose tissue (eWAT), and subcutaneous inguinal adipose tissue (iWAT) mass gain, improved glucose tolerance, increased markers of mitochondrial biogenesis in iWAT and eWAT, and increased UCP-1 protein content in iWAT. In iWAT, VWR attenuated the LPS induced increase in mRNA expression of TNF-?, MCP-1, and follistatin, along with phosphorylation of STAT3. In addition, VWR had a main effect for reducing iWAT mRNA expression of IL-1?, IL-6, and SOCS3. In eWAT, VWR had a main effect for reducing mRNA expression of IL-1?, MCP-1, IL-6, and follistatin. Further, VWR increased SOCS3 mRNA expression and phosphorylation of STAT3 in SAL mice, thus the relative change in response to LPS for these markers was attenuated. The protective effect of prior physical activity occurred in conjunction with increases in the protein content of a component of the LPS binding complex, MyD88. Overall, the results from this study demonstrate that habitual physical activity can attenuate the LPS induced inflammatory response in adipose tissue and this occurs to a greater extent in iWAT compare with eWAT.