Targeted breast cancer therapy by harnessing the inherent blood group antigen immune system.
Ontology highlight
ABSTRACT: Cancer gene therapy has attracted increasing attention for its advantages over conventional therapy in specific killing of tumor cells. Here, we attempt to prove a novel therapeutic approach that targets tumors by harnessing the blood antigen immune response system, which is inherently present in patients with breast cancers. Breast cancer MDA-MB-231 cells expressed blood group H antigen precursor. After ectopic expression of blood group A glycosyltransferase, we found that the H precursor was converted into the group A antigen, appearing on the surface of tumor cells. Incubation with group B plasma from breast cancer patients activated the antigen-antibody-complement cascade and triggered tumor cell killing. Interestingly, expression of blood A antigen also reduced tumorigenesis in breast cancer cells by inhibiting cell proliferation, migration, and tumor sphere formation. Cell cycle analysis revealed that cancer cells were paused at S phase due to the activation of cell cycle regulatory genes. Furthermore, pro-apoptotic genes were unregulated by the A antigen, including BAX, P21, and P53, while the anti-apoptotic BCL2 was down regulated. Importantly, we showed that extracellular HMGB1 and ATP, two critical components of the immunogenic cell death pathway, were significantly increased in the blood A antigen-expressing tumor cells. Collectively, these data suggest that blood antigen therapy induces specific cancer cell killing by activating the apoptosis and immunogenic cell death pathways. Further translational studies are thereby warranted to apply this approach in cancer immuno-gene therapy.
SUBMITTER: Han W
PROVIDER: S-EPMC5362465 | biostudies-literature | 2017 Feb
REPOSITORIES: biostudies-literature
ACCESS DATA