ABSTRACT: Periodontitis is one of the most common oral inflammatory diseases, and results in connective tissue degradation and gradual tooth loss. It manifests with formation of periodontal pockets, in which anaerobic and Gram?negative bacteria proliferate rapidly. Consequently, alteration of the subgingival microbiota is considered the primary etiologic agent of periodontitis. Previous studies have reported that smokers are at increased risk of periodontal disease, in both prevalence and severity, indicating that smoking is a risk factor for the onset and progression of the pathology. In the present study, 16S rRNA sequencing was employed to assess the subgingival microbiota in 6 smoker patients with chronic periodontitis, 6 non?smoker patients with chronic periodontitis and 8 healthy controls. The results demonstrated significant alterations in the microbial structure of periodontitis patients. High relative abundance of Parvimonans, Desulfubulbus, Paludibacter, Haemophilus, and Sphaerochaeta genera characterized subgingival microbiota of periodontitis patients, both smokers and non?smokers. Due to the high precision and sensitivity of the 16S rRNA sequencing method, analysis for low?abundant genera (including Pedobacter, Granulicatella, Paracoccus, Atopobium, Bifidobacterium, Coprococcus, Oridobacteriu, Peptococcus, Oscillospira and Akkermansia) was feasible, and revealed novel phylotypes associated with periodontitis. Of note, a major microbial community alteration was evident in smoker patients, suggesting an association between smoking and severity of subgingival dysbiosis. The present study confirmed that chronic periodontitis is a polymicrobial disease where changes in the equilibrium of subgingival microbiota contribute to severity of pathology.