Unknown

Dataset Information

0

Tubular Cardiac Tissues Derived from Human Induced Pluripotent Stem Cells Generate Pulse Pressure In Vivo.


ABSTRACT: Human induced pluripotent stem (iPS) cell-derived cardiac cells provide the possibility to fabricate cardiac tissues for transplantation. However, it remains unclear human bioengineered cardiac tissues function as a functional pump in vivo. Human iPS cells induced to cardiomyocytes in suspension were cultured on temperature-responsive dishes to fabricate cardiac cell sheets. Two pairs of triple-layered sheets were transplanted to wrap around the inferior vena cava (IVC) of nude rats. At 4 weeks after transplantation, inner pressure changes in the IVC were synchronized with electrical activations of the graft. Under 80 pulses per minute electrical stimulation, the inner pressure changes at 8 weeks increased to 9.1 ± 3.2 mmHg, which were accompanied by increases in the baseline inner pressure of the IVC. Immunohistochemical analysis revealed that 0.5-mm-thick cardiac troponin T-positive cardiac tissues, which contained abundant human mitochondria, were clearly engrafted lamellar around the IVC and surrounded by von Willebrand factor-positive capillary vessels. The mRNA expression of several contractile proteins in cardiac tissues at 8 weeks in vivo was significantly upregulated compared with those at 4 weeks. We succeeded in generating pulse pressure by tubular human cardiac tissues in vivo. This technology might lead to the development of a bioengineered heart assist pump.

SUBMITTER: Seta H 

PROVIDER: S-EPMC5371992 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9390608 | biostudies-literature
| S-EPMC3464077 | biostudies-literature
| S-EPMC3681781 | biostudies-literature
| S-EPMC10173856 | biostudies-literature
| S-EPMC7254497 | biostudies-literature
| S-EPMC6813561 | biostudies-literature
| S-EPMC7872211 | biostudies-literature
| S-EPMC11058244 | biostudies-literature
| S-EPMC7181791 | biostudies-literature
| S-EPMC11001295 | biostudies-literature