Metallacycle-cored supramolecular assemblies with tunable fluorescence including white-light emission.
Ontology highlight
ABSTRACT: Control over the fluorescence of supramolecular assemblies is crucial for the development of chemosensors and light-emitting materials. Consequently, the postsynthetic modification of supramolecular structures via host-guest interactions has emerged as an efficient strategy in recent years that allows the facile tuning of the photophysical properties without requiring a tedious chemical synthesis. Herein, we used a phenanthrene-21-crown-7 (P21C7)-based 60° diplatinum(II) acceptor 8 in the construction of three exohedral P21C7 functionalized rhomboidal metallacycles 1-3 which display orange, cyan, and green emission colors, respectively. Although these colors originate from the dipyridyl precursors 10-12, containing triphenylamine-, tetraphenylethene-, and pyrene-based fluorophores, respectively, the metal-ligand coordination strongly influences their emission properties. The metallacycles were further linked into emissive supramolecular oligomers by the addition of a fluorescent bis-ammonium linker 4 that forms complementary host-guest interactions with the pendant P21C7 units. Notably, the final ensemble derived from a 1:1 mixture of 1 and 4 displays a concentration-dependent emission. At low concentration, i.e., <25 µM, it emits a blue color, whereas an orange emission was observed when the concentration exceeds >5 mM. Moreover, white-light emission was observed from the same sample at a concentration of 29 µM, representing a pathway to construct supramolecular assemblies with tunable fluorescence properties.
SUBMITTER: Zhang M
PROVIDER: S-EPMC5373375 | biostudies-literature | 2017 Mar
REPOSITORIES: biostudies-literature
ACCESS DATA