Unknown

Dataset Information

0

Characterization and mutational analysis of a nicotinamide mononucleotide deamidase from Agrobacterium tumefaciens showing high thermal stability and catalytic efficiency.


ABSTRACT: NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organismal homeostasis. Among the enzymes involved in its recycling, nicotinamide mononucleotide (NMN) deamidase is one of the key players in the bacterial pyridine nucleotide cycle, where it catalyzes the conversion of NMN into nicotinic acid mononucleotide (NaMN), which is later converted to NAD+ in the Preiss-Handler pathway. The biochemical characteristics of bacterial NMN deamidases have been poorly studied, although they have been investigated in some firmicutes, gamma-proteobacteria and actinobacteria. In this study, we present the first characterization of an NMN deamidase from an alphaproteobacterium, Agrobacterium tumefaciens (AtCinA). The enzyme was active over a broad pH range, with an optimum at pH 7.5. Moreover, the enzyme was quite stable at neutral pH, maintaining 55% of its activity after 14 days. Surprisingly, AtCinA showed the highest optimal (80°C) and melting (85°C) temperatures described for an NMN deamidase. The above described characteristics, together with its high catalytic efficiency, make AtCinA a promising biocatalyst for the production of pure NaMN. In addition, six mutants (C32A, S48A, Y58F, Y58A, T105A and R145A) were designed to study their involvement in substrate binding, and two (S31A and K63A) to determine their contribution to the catalysis. However, only four mutants (C32A, S48A Y58F and T105A) showed activity, although with reduced catalytic efficiency. These results, combined with a thermal and structural analysis, reinforce the Ser/Lys catalytic dyad mechanism as the most plausible among those proposed.

SUBMITTER: Martinez-Monino AB 

PROVIDER: S-EPMC5384747 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Characterization and mutational analysis of a nicotinamide mononucleotide deamidase from Agrobacterium tumefaciens showing high thermal stability and catalytic efficiency.

Martínez-Moñino Ana Belén AB   Zapata-Pérez Rubén R   García-Saura Antonio Ginés AG   Gil-Ortiz Fernando F   Pérez-Gilabert Manuela M   Sánchez-Ferrer Álvaro Á  

PloS one 20170407 4


NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organismal homeostasis. Among the enzymes involved in its recycling, nicotinamide mononucleotide (NMN) deamidase is one of the key players in the bacterial pyridine nucleotide cycle, where it catalyzes the conversion of NMN into nicotinic acid mononucleotide (NaMN), which is later converted to NAD+ in the Preiss-Handler pathway. The biochemical characteristics of bac  ...[more]

Similar Datasets

| S-EPMC3220592 | biostudies-literature
| S-EPMC4601368 | biostudies-literature
| S-EPMC6530925 | biostudies-literature
| S-EPMC8277702 | biostudies-literature
| S-EPMC4457062 | biostudies-literature
| S-EPMC2203313 | biostudies-literature
| S-EPMC58580 | biostudies-literature
| S-EPMC5908930 | biostudies-literature
| S-EPMC179734 | biostudies-literature
| S-EPMC6095924 | biostudies-literature