Photoacoustic in vitro flow cytometry for nanomaterial research.
Ontology highlight
ABSTRACT: Conventional flow cytometry is a versatile tool for drug research and cell characterization. However, it is poorly suited for quantification of non-fluorescent proteins and artificial nanomaterials without the use of additional labeling. The rapid growth of biomedical applications for small non-fluorescent nanoparticles (NPs) for drug delivery and contrast and therapy enhancement, as well as research focused on natural cell pigments and chromophores, demands high-throughput quantification methods for the non-fluorescent components. In this work, we present a novel photoacoustic (PA) fluorescence flow cytometry (PAFFC) platform that combines NP quantification though PA detection with conventional in vitro flow cytometry sample characterization using fluorescence labeling. PAFFC simplifies high-throughput analysis of cell-NP interactions, optimization of targeted nanodrugs, and NP toxicity assessment, providing a direct correlation between NP uptake and characterization of toxicity markers for every cell.
SUBMITTER: Nedosekin DA
PROVIDER: S-EPMC5387917 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA