Unknown

Dataset Information

0

Nkx2-5 and Sarcospan genetically interact in the development of the muscular ventricular septum of the heart.


ABSTRACT: The muscular ventricular septum separates the flow of oxygenated and de-oxygenated blood in air-breathing vertebrates. Defects within it, termed muscular ventricular septal defects (VSDs), are common, yet less is known about how they arise than rarer heart defects. Mutations of the cardiac transcription factor NKX2-5 cause cardiac malformations, including muscular VSDs. We describe here a genetic interaction between Nkx2-5 and Sarcospan (Sspn) that affects the risk of muscular VSD in mice. Sspn encodes a protein in the dystrophin-glycoprotein complex. Sspn knockout (SspnKO) mice do not have heart defects, but Nkx2-5+/-/SspnKO mutants have a higher incidence of muscular VSD than Nkx2-5+/- mice. Myofibers in the ventricular septum follow a stereotypical pattern that is disrupted around a muscular VSD. Subendocardial myofibers normally run in parallel along the left ventricular outflow tract, but in the Nkx2-5+/-/SspnKO mutant they commonly deviate into the septum even in the absence of a muscular VSD. Thus, Nkx2-5 and Sspn act in a pathway that affects the alignment of myofibers during the development of the ventricular septum. The malalignment may be a consequence of a defect in the coalescence of trabeculae into the developing ventricular septum, which has been hypothesized to be the mechanistic basis of muscular VSDs.

SUBMITTER: Panzer AA 

PROVIDER: S-EPMC5390293 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Nkx2-5 and Sarcospan genetically interact in the development of the muscular ventricular septum of the heart.

Panzer Adam A AA   Regmi Suk D SD   Cormier DePorres D   Danzo Megan T MT   Chen Iuan-Bor D ID   Winston Julia B JB   Hutchinson Alayna K AK   Salm Diana D   Schulkey Claire E CE   Cochran Rebecca S RS   Wilson David B DB   Jay Patrick Y PY  

Scientific reports 20170413


The muscular ventricular septum separates the flow of oxygenated and de-oxygenated blood in air-breathing vertebrates. Defects within it, termed muscular ventricular septal defects (VSDs), are common, yet less is known about how they arise than rarer heart defects. Mutations of the cardiac transcription factor NKX2-5 cause cardiac malformations, including muscular VSDs. We describe here a genetic interaction between Nkx2-5 and Sarcospan (Sspn) that affects the risk of muscular VSD in mice. Sspn  ...[more]

Similar Datasets

| S-EPMC10102999 | biostudies-literature
| S-EPMC2847484 | biostudies-literature
| S-EPMC5565637 | biostudies-literature
| S-EPMC4873473 | biostudies-literature
| S-EPMC4845268 | biostudies-literature
| S-EPMC10123344 | biostudies-literature
| S-EPMC6907331 | biostudies-literature
| S-EPMC4982761 | biostudies-literature
| S-EPMC2909759 | biostudies-literature
| S-EPMC4355028 | biostudies-literature