Unknown

Dataset Information

0

Electrically driven cation exchange for in situ fabrication of individual nanostructures.


ABSTRACT: Cation exchange (CE) has been recognized as a particularly powerful tool for the synthesis of heterogeneous nanocrystals. At present, CE can be divided into two categories, namely ion solvation-driven CE reaction and thermally activated CE reaction. Here we report an electrically driven CE reaction to prepare individual nanostructures inside a transmission electron microscope. During the process, Cd is eliminated due to Ohmic heating, whereas Cu+ migrates into the crystal driven by the electrical field force. Contrast experiments reveal that the feasibility of electrically driven CE is determined by the structural similarity of the sulfur sublattices between the initial and final phases, and the standard electrode potentials of the active electrodes. Our experimental results demonstrate a strategy for the selective growth of individual nanocrystals and provide crucial insights into understanding of the microscopic pathways leading to the formation of heterogeneous structures.

SUBMITTER: Zhang Q 

PROVIDER: S-EPMC5394283 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Electrically driven cation exchange for in situ fabrication of individual nanostructures.

Zhang Qiubo Q   Yin Kuibo K   Yin Kuibo K   Dong Hui H   Zhou Yilong Y   Tan Xiaodong X   Yu Kaihao K   Hu Xiaohui X   Xu Tao T   Zhu Chao C   Xia Weiwei W   Xu Feng F   Zheng Haimei H   Sun Litao L  

Nature communications 20170412


Cation exchange (CE) has been recognized as a particularly powerful tool for the synthesis of heterogeneous nanocrystals. At present, CE can be divided into two categories, namely ion solvation-driven CE reaction and thermally activated CE reaction. Here we report an electrically driven CE reaction to prepare individual nanostructures inside a transmission electron microscope. During the process, Cd is eliminated due to Ohmic heating, whereas Cu<sup>+</sup> migrates into the crystal driven by th  ...[more]

Similar Datasets

| S-EPMC5979780 | biostudies-literature
| S-EPMC7494346 | biostudies-literature
| S-EPMC4278689 | biostudies-literature
| S-EPMC7891384 | biostudies-literature
| S-EPMC9419233 | biostudies-literature
| S-EPMC3868207 | biostudies-literature
| S-EPMC4917961 | biostudies-literature
| S-EPMC8016170 | biostudies-literature
| S-EPMC10134142 | biostudies-literature
| S-EPMC5932065 | biostudies-literature