Project description:Chronic myelogenous leukemia (CML) is a malignancy of the myeloid cell lineage characterized by a recurrent chromosomal abnormality: the Philadelphia chromosome, which results from the reciprocal translocation of the chromosomes 9 and 22. The Philadelphia chromosome contains a fusion gene called BCR-ABL1. The BCR-ABL1 codes for an aberrantly functioning tyrosine kinase that drives the malignant proliferation of the founding clone. The advent of tyrosine kinase inhibitors (TKI) represents a landmark in the treatment of CML, that has led to tremendous improvement in the remission and survival rates. Since the introduction of imatinib, the first TKI, several other TKI have been approved that further broadened the arsenal against CML. Patients treated with TKIs require sensitive monitoring of BCR-ABL1 transcripts with quantitative real-time polymerase chain reaction (qRT-PCT), which has become an essential part of managing patients with CML. In this review, we discuss the importance of the BCR-ABL1 assay, and we highlight the growing importance of BCR-ABL1 dynamics. We also introduce a mathematical correction for the BCR-ABL1 assay that could help homogenizing the use of the ABL1 as a control gene. Finally, we discuss the growing body of evidence concerning treatment-free remission. Along with the continuous improvement in the therapeutic arsenal against CML, the molecular monitoring of CML represents the avant-garde in the struggle to make CML a curable disease.
Project description:The first treatment of chronic myeloid leukemia (CML) included spleen x-radiation and conventional drugs, mainly Busulfan and Hydroxyurea. This therapy improved the quality of life during the chronic phase of the disease, without preventing nor significantly delaying the progression towards advanced phases. The introduction of allogeneic stem cell transplantation (alloSCT) marked the first important breakthrough in the evolution of CML treatment, because about 50% of the eligible patients were cured. The second breakthrough was the introduction of human recombinant interferon-alfa, able to achieve a complete cytogenetic remission in 15% to 30% of patients, with a significant survival advantage over conventional chemotherapy. At the end of the last century, about 15 years ago, all these treatments were quickly replaced by a class of small molecules targeting the tyrosine kinases (TK), which were able to induce a major molecular remission in most of the patients, without remarkable side effects, and a very prolonged life-span. The first approved TK inhibitor (TKI) was Imatinib Mesylate (Glivec or Gleevec, Novartis). Rapidly, other TKIs were developed tested and commercialized, namely Dasatinib (Sprycel, Bristol-Myers Squibb), Nilotinib (Tasigna, Novartis), Bosutinib (Busulif, Pfizer) and Ponatinib (Iclusig, Ariad). Not all these compounds are available worldwide; some of them are approved only for second line treatment, and the high prices are a problem that can limit their use. A frequent update of treatment recommendations is necessary. The current treatment goals include not only the prevention of the transformation to the advanced phases and the prolongation of survival, but also a length of survival and of a quality of life comparable to that of non-leukemic individuals. In some patient the next ambitious step is to move towards a treatment-free remission. The CML therapy, the role of alloSCT and the promising experimental strategies are reviewed in the context of the new therapeutic goals.
Project description:Chronic myeloid leukemia (CML) is an excellent model of the multistep processes in cancer. Initiating BCR-ABL mutations are required for the initial phase of the disease (chronic phase, CP-CML). Some CP-CML patients acquire additional mutation(s) that transforms CP-CML to poor prognosis, hard to treat, acute myeloid or lymphoid leukemia or blast phase CML (BP-CML). It is unclear where in the hemopoietic hierarchy additional mutations are acquired in BP-CML, how the hemopoietic hierarchy is altered as a consequence, and the cellular identity of the resulting leukemia-propagating stem cell (LSC) populations. Here, we show that myeloid BP-CML is associated with expanded populations that have the immunophenotype of normal progenitor populations that vary between patients. Serial transplantation in immunodeficient mice demonstrated functional LSCs reside in multiple populations with the immunophenotype of normal progenitor as well as stem cells. Multicolor fluorescence in situ hybridization detected serial acquisition of cytogenetic abnormalities of chromosome 17, associated with transformation to BP-CML, that is detected with equal frequency in all functional LSC compartments. New effective myeloid BP-CML therapies will likely have to target all these LSC populations.
Project description:BackgroundWith the advent of tyrosine kinase inhibitors (TKIs), the prognosis of chronic myeloid leukemia (CML) seems to have dramatically improved over the last two decades. Accurate information of the global burden of CML is critical for direct health policy and healthcare resource allocation in the era of high-cost TKI therapy.ObjectiveThis study aimed to evaluate the health burden of CML at global, regional, and national levels from 1990 to 2017.MethodsWe collected data of CML between 1990 and 2017 from the Global Burden of Disease (GBD) study 2017 including, annual incidence, disease-related mortality, and disability-adjusted life-years (DALY), and the corresponding age-standardized rates (ASRs). To summarize the results, countries were categorized by sociodemographic index (SDI) quintiles and 21 GBD regions.ResultsIn 2017, an estimated 34,179 [95% Uncertainty Interval (UI), 31,516-36,714) incident cases of CML were recorded, and 24,054 (95%UI, 22,233-26,072) CML-related deaths were reported worldwide. Both, the age-standardized incidence rate (ASIR) and age-standardized death rate (ASDR) steadily decreased from 1990 to 2017, with estimated annual percentage changes (EAPCs) of -2.39 (95%UI, -8.13-3.71) and -2.74 (95%UI, -9.31-4.31), respectively. The global incidence and mortality of CML in males were higher than that in females. The ASRs varied substantially across regions, with the highest burden in Andean Latin America, Central Sub-Saharan Africa, and Southeast Asia. Besides, the ASRs decreased most obviously in the high-SDI regions compared to non-high-SDI regions. Moreover, the lower the SDI, the higher was the proportion of deaths in the younger age groups.ConclusionDespite the decreasing trends of ASRs of CML from 1990 to 2017, the health-related burden of CML remains a challenge for the low-SDI regions. These findings highlight that appropriate strategies should be adopted in low-SDI countries to reduce the ASRs of CML.
Project description:Chronic myeloid leukemia (CML) is caused by BCRABL1 in a cell with the biological potential, intrinsic or acquired, to cause leukemia. This cell is commonly termed the CML leukemia stem cell (LSC). In humans a CML LSC is operationally-defined by ≥1 in vitro or in vivo assays of human leukemia cells transferred to immune-deficient mice. Results of these assays are sometimes discordant. There is also the unproved assumption that biological features of a CML LSC are stable. These considerations make accurate and precise identification of a CML LSC difficult or impossible. In this review, we consider biological features of CML LSCs defined by these assays. We also consider whether CML LSCs are susceptible to targeting by tyrosine kinase inhibitors (TKIs) and other drugs, and whether elimination of CML LSCs is needed to achieve therapy-free remission or cure CML.
Project description:Chronic myeloid leukemia (CML) is a neoplasia characterized by proliferation of a myeloid cell lineage and chromosome translocation t(9;22) (q34;q11.2). As in the case of most cancers, the average telomere length in CML cells is shorter than that in normal blood cells. However, there are currently no data available concerning specific individual telomere length in CML. Here, we studied telomere length on each chromosome arm of CML cells. In situ hybridization with peptide nucleic acid probes was performed on CML cells in metaphase. The fluorescence intensity of each specific telomere was converted into kilobases according to the telomere restriction fragment results for each sample. We found differences in telomere length between short arm ends and long arm ends. We observed recurrent telomere length changes as well as telomere length maintenance and elongation in some individual telomeres. We propose a possible involvement of individual telomere length changes to some chromosomal abnormalities in CML. We suggest that individual telomere length maintenance is chromosome arm-specific associated with leukemia cells.
Project description:Despite the major advancements in the management of chronic phase (CP) chronic myeloid leukemia (CML), blast crisis (BC) remains a major therapeutic challenge. BC can be myeloid, lymphoid, or mixed lineage with myeloid BC being the most common type. BC in CML is mediated by aberrant tyrosine kinase activity of the BCR::ABL fusion protein. The introduction of BCR::ABL tyrosine kinase inhibitor (TKI) has been a gamechanger in the treatment of CML and there has been a significant reduction in the incidence of BC. The main treatment goal in BC is to achieve a second CP and consolidate that with an allogeneic stem cell transplantation (SCT) in eligible patients. The outcomes in BC remain dismal even in the current era. In this review, we provide an overview of the biology and current therapeutic approach in myeloid BC.
Project description:Detailed information on the crystal structure of the pharmacologically targeted domains of the BCR-ABL molecule and on its intracellular signaling, which are potentially involved in growth, anti-apoptosis, metabolism and stemness, has made the study of chronic myeloid leukemia the most successful field in tumor biology. However, we now face the issue of drug resistance due to deregulation in the quality control of both DNA and protein. BCR-ABL is basically a misfolded protein with intrinsically disordered regions, which not only produces endoplasmic reticulum stress followed by unfolded protein response in some settings, but also conformational plasticity that may affect the structure of the whole molecule. The intercellular signaling derived from the leukemic cell microenvironment may influence the intracellular responses that take place in a manner both dependent on and independent of BCR-ABL tyrosine kinase activity.