Unknown

Dataset Information

0

Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China.


ABSTRACT: Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associated with the nitrogen (N) application rate (r = 0.8878, n = 16). Excessive fertilizer N application resulted in N loss through nitrous oxide gas emitted from the vegetable fields. Compared with a conventional fertilization (N2) treatment, the cumulative N2O emissions decreased significantly in the growing seasons of four plant species from an nitrogen synergist (a nitrification inhibitor, dicyandiamide and biochar treatments by 34.6% and 40.8%, respectively. However, the effects of biochar on reducing N2O emissions became more obvious than that of dicyandiamide over time. The yield-scaled N2O emissions in consecutive growing seasons for four species increased with an increase in the N fertilizer application rate, and with continuous application of N fertilizer. This was especially true for the high N fertilizer treatment that resulted in a risk of yield-scaled N2O emissions. Generally, the additions of dicyandiamide and biochar significantly decreased yield-scaled N2O-N emissions by an average of 45.9% and 45.7%, respectively, compared with N2 treatment from the consecutive four vegetable seasons. The results demonstrated that the addition of dicyandiamide or biochar in combination with application of a rational amount of N could provide the best strategy for the reduction of greenhouse gas emissions in vegetable field in south China.

SUBMITTER: Yi Q 

PROVIDER: S-EPMC5395173 | biostudies-literature | 2017

REPOSITORIES: biostudies-literature

altmetric image

Publications

Effects of nitrogen application rate, nitrogen synergist and biochar on nitrous oxide emissions from vegetable field in south China.

Yi Qiong Q   Tang Shuanghu S   Fan Xiaolin X   Zhang Mu M   Pang Yuwan Y   Huang Xu X   Huang Qiaoyi Q  

PloS one 20170418 4


Globally, vegetable fields are the primary source of greenhouse gas emissions. A closed-chamber method together with gas chromatography was used to measure the fluxes of nitrous oxide (N2O) emissions in typical vegetable fields planted with four vegetables sequentially over time in the same field: endive, lettuce, cabbage and sweet corn. Results showed that N2O fluxes occurred in pulses with the N2O emission peak varying greatly among the crops. In addition, N2O emissions were linearly associate  ...[more]

Similar Datasets

| S-EPMC4314647 | biostudies-other
| S-EPMC9265669 | biostudies-literature
| S-EPMC8380423 | biostudies-literature
| S-EPMC6383039 | biostudies-literature
| S-EPMC5421752 | biostudies-literature
| S-EPMC9127667 | biostudies-literature
| S-EPMC4529221 | biostudies-literature
| S-EPMC5481850 | biostudies-literature
| S-EPMC5993008 | biostudies-other
| S-EPMC4078848 | biostudies-other