Unknown

Dataset Information

0

Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching.


ABSTRACT:

Background

Tendon motion, which is commonly observed using ultrasound imaging, is one of the most important features used in tendinopathy diagnosis. However, speckle noise and out-of-plane issues make the tracking process difficult. Manual tracking is usually time consuming and often yields inconsistent results between users.

Methods

To automatically track tendon motion in ultrasound images, we developed a new method that combines the advantages of optical flow and multi-kernel block matching. For every pair of adjacent image frames, the optical flow is computed and used to estimate the accumulated displacement. The proposed method selects the frame interval adaptively based on this displacement. Multi-kernel block matching is then computed on the two selected frames, and, to reduce tracking errors, the detailed displacements of the frames in between are interpolated based on the optical flow results.

Results

In the experiments, cadaver data were used to evaluate the tracking results. The mean absolute error was less than 0.05 mm. The proposed method also tracked the motion of tendons in vivo, which provides useful information for clinical diagnosis.

Conclusion

The proposed method provides a new index for adaptively determining the frame interval. Compared with other methods, the proposed method yields tracking results that are significantly more accurate.

SUBMITTER: Chuang BI 

PROVIDER: S-EPMC5399340 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Tendon-motion tracking in an ultrasound image sequence using optical-flow-based block matching.

Chuang Bo-I BI   Hsu Jian-Han JH   Kuo Li-Chieh LC   Jou I-Ming IM   Su Fong-Chin FC   Sun Yung-Nien YN  

Biomedical engineering online 20170420 1


<h4>Background</h4>Tendon motion, which is commonly observed using ultrasound imaging, is one of the most important features used in tendinopathy diagnosis. However, speckle noise and out-of-plane issues make the tracking process difficult. Manual tracking is usually time consuming and often yields inconsistent results between users.<h4>Methods</h4>To automatically track tendon motion in ultrasound images, we developed a new method that combines the advantages of optical flow and multi-kernel bl  ...[more]

Similar Datasets

| S-EPMC6505704 | biostudies-literature
| S-EPMC5688953 | biostudies-literature
| S-EPMC2789985 | biostudies-literature
| S-EPMC10425453 | biostudies-literature
| S-EPMC6208925 | biostudies-literature
| S-EPMC6170141 | biostudies-literature
| S-EPMC3799900 | biostudies-literature
| S-EPMC8266837 | biostudies-literature
| S-EPMC2832062 | biostudies-literature
| S-EPMC2682657 | biostudies-literature