Unknown

Dataset Information

0

Orexin A attenuates palmitic acid-induced hypothalamic cell death.


ABSTRACT: Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) and upregulation of the pro-apoptotic protein B cell lymphoma 2 associated X protein (Bax). Orexin A (OXA), a hypothalamic peptide important in obesity resistance, also contributes to neuroprotection. Prior studies have demonstrated that OXA attenuates oxidative stress induced cell death. We hypothesized that OXA would be neuroprotective against PA induced cell death. To test this, we treated an immortalized hypothalamic cell line (designated mHypoA-1/2) with OXA and PA. We demonstrate that OXA attenuates PA-induced hypothalamic cell death via reduced caspase-3/7 apoptosis, stabilization of Bcl-2 gene expression, and reduced Bax/Bcl-2 gene expression ratio. We also found that OXA inhibits ROS production after PA exposure. Finally, we show that PA exposure in mHypoA-1/2 cells significantly reduces basal respiration, maximum respiration, ATP production, and reserve capacity. However, OXA treatment reverses PA-induced changes in intracellular metabolism, increasing basal respiration, maximum respiration, ATP production, and reserve capacity. Collectively, these results support that OXA protects against PA-induced hypothalamic dysregulation, and may represent one mechanism through which OXA can ameliorate effects of obesogenic diet on brain health.

SUBMITTER: Duffy CM 

PROVIDER: S-EPMC5399885 | biostudies-literature | 2016 Sep

REPOSITORIES: biostudies-literature

altmetric image

Publications

Orexin A attenuates palmitic acid-induced hypothalamic cell death.

Duffy Cayla M CM   Nixon Joshua P JP   Butterick Tammy A TA  

Molecular and cellular neurosciences 20160721


Palmitic acid (PA), an abundant dietary saturated fatty acid, contributes to obesity and hypothalamic dysregulation in part through increase in oxidative stress, insulin resistance, and neuroinflammation. Increased production of reactive oxygen species (ROS) as a result of PA exposure contributes to the onset of neuronal apoptosis. Additionally, high fat diets lead to changes in hypothalamic gene expression profiles including suppression of the anti-apoptotic protein B cell lymphoma 2 (Bcl-2) an  ...[more]

Similar Datasets

2022-07-16 | PXD029005 | Pride
2022-07-16 | PXD029010 | Pride
2022-07-16 | PXD029016 | Pride
| S-EPMC10660519 | biostudies-literature
| S-EPMC9622470 | biostudies-literature
| S-EPMC9217975 | biostudies-literature
| S-EPMC6511168 | biostudies-literature
| S-EPMC4736315 | biostudies-literature
| S-EPMC4811357 | biostudies-literature
| S-EPMC9280058 | biostudies-literature