Unknown

Dataset Information

0

Nit1 is a metabolite repair enzyme that hydrolyzes deaminated glutathione.


ABSTRACT: The mammalian gene Nit1 (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ?35% sequence identical to ?-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently ?-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly active toward deaminated glutathione (dGSH; i.e., a form of glutathione in which the free amino group has been replaced by a carbonyl group). We further show that Nit1-KO mutants of both human and yeast cells accumulate dGSH and the same compound is excreted in large amounts in the urine of Nit1-KO mice. Finally, we show that several mammalian aminotransferases (transaminases), both cytosolic and mitochondrial, can form dGSH via a common (if slow) side-reaction and provide indirect evidence that transaminases are mainly responsible for dGSH formation in cultured mammalian cells. Altogether, these findings delineate a typical instance of metabolite repair, whereby the promiscuous activity of some abundant enzymes of primary metabolism leads to the formation of a useless and potentially harmful compound, which needs a suitable "repair enzyme" to be destroyed or reconverted into a useful metabolite. The need for a dGSH repair reaction does not appear to be limited to eukaryotes: We demonstrate that Nit1 homologs acting as excellent dGSH amidases also occur in Escherichia coli and other glutathione-producing bacteria.

SUBMITTER: Peracchi A 

PROVIDER: S-EPMC5402446 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


The mammalian gene <i>Nit1</i> (nitrilase-like protein 1) encodes a protein that is highly conserved in eukaryotes and is thought to act as a tumor suppressor. Despite being ∼35% sequence identical to ω-amidase (Nit2), the Nit1 protein does not hydrolyze efficiently α-ketoglutaramate (a known physiological substrate of Nit2), and its actual enzymatic function has so far remained a puzzle. In the present study, we demonstrate that both the mammalian Nit1 and its yeast ortholog are amidases highly  ...[more]

Similar Datasets

| S-EPMC3526306 | biostudies-literature
| S-EPMC4336337 | biostudies-literature
| S-EPMC3560532 | biostudies-literature
| S-EPMC8478210 | biostudies-literature
| S-EPMC5714213 | biostudies-literature
| S-EPMC10825186 | biostudies-literature
| S-EPMC6904873 | biostudies-literature
| S-EPMC1892885 | biostudies-literature
| S-EPMC5278637 | biostudies-literature
2017-11-14 | ST000900 | MetabolomicsWorkbench