Unknown

Dataset Information

0

Vasodilation of Isolated Vessels and the Isolation of the Extracellular Matrix of Tight-skin Mice.


ABSTRACT: The interferon regulatory factor 5 (IRF5) is crucial for cells to determine if they respond in a pro-inflammatory or anti-inflammatory fashion. IRF5's ability to switch cells from one pathway to another is highly attractive as a therapeutic target. We designed a decoy peptide IRF5D with a molecular modeling software for designing small molecules and peptides. IRF5D inhibited IRF5, reduced alterations in extracellular matrix, and improved endothelial vasodilation in the tight-skin mouse (Tsk/+). The Kd of IRF5D for recombinant IRF5 is 3.72 ± 0.74 x 10-6 M as determined by binding experiments using biolayer interferometry experiments. Endothelial cells (EC) proliferation and apoptosis were unchanged using increasing concentrations of IRF5D (0 to 100 µg/mL, 24 h). Tsk/+ mice were treated with IRF5D (1 mg/kg/d subcutaneously, 21 d). IRF5 and ICAM expressions were decreased after IRF5D treatment. Endothelial function was improved as assessed by vasodilation of facialis arteries from Tsk/+ mice treated with IRF5D compared to Tsk/+ mice without IRF5D treatment. As a transcription factor, IRF5 traffics from the cytosol to the nucleus. Translocation was assessed by immunohistochemistry on cardiac myocytes cultured on the different cardiac extracellular matrices. IRF5D treatment of the Tsk/+ mouse resulted in a reduced number of IRF5 positive nuclei in comparison to the animals without IRF5D treatment (50 µg/mL, 24 h). These findings demonstrate the important role that IRF5 plays in inflammation and fibrosis in Tsk/+ mice.

SUBMITTER: Weihrauch D 

PROVIDER: S-EPMC5408651 | biostudies-literature | 2017 Mar

REPOSITORIES: biostudies-literature

altmetric image

Publications

Vasodilation of Isolated Vessels and the Isolation of the Extracellular Matrix of Tight-skin Mice.

Weihrauch Dorothee D   Krolikowski John G JG   Jones Deron W DW   Zaman Tahniyath T   Bamkole Omoshalewa O   Struve Janine J   Pagel Paul S PS   Lohr Nicole L NL   Pritchard Kirkwood A KA  

Journal of visualized experiments : JoVE 20170324 121


The interferon regulatory factor 5 (IRF5) is crucial for cells to determine if they respond in a pro-inflammatory or anti-inflammatory fashion. IRF5's ability to switch cells from one pathway to another is highly attractive as a therapeutic target. We designed a decoy peptide IRF5D with a molecular modeling software for designing small molecules and peptides. IRF5D inhibited IRF5, reduced alterations in extracellular matrix, and improved endothelial vasodilation in the tight-skin mouse (Tsk/+).  ...[more]

Similar Datasets

| S-EPMC2885069 | biostudies-literature
| S-EPMC9997118 | biostudies-literature
| S-EPMC8166942 | biostudies-literature
| S-EPMC7465455 | biostudies-literature
| S-EPMC10491993 | biostudies-literature
| S-EPMC7182835 | biostudies-literature
| S-EPMC8555298 | biostudies-literature
| S-EPMC8661536 | biostudies-literature
| S-EPMC8240139 | biostudies-literature
| S-EPMC6278248 | biostudies-literature