Ontology highlight
ABSTRACT: Introduction
Recent advances regarding mechanisms of chronic pain emphasize the role of corticolimbic circuitry in predicting risk for chronic pain, independently from site of injury-related parameters. These results compel revisiting the role of peripheral nociceptive signaling in chronic pain. We address this issue by examining what brain circuitry transmit information regarding the intensity of chronic pain and how this information may be related to a common co-morbidity, depression.Methods
Resting state functional MRI was used in a large group of chronic pain patients (n=40 chronic back pain, CBP, and n=44 osteoarthritis, OA patients), and in comparison to healthy subjects (n=88). We used a graph theoretical measure, degree count, to investigate voxel-wise information sharing/transmission in the brain. Degree count, a functional connectivity based measure, identifies the number of voxels functionally connected to every given voxel. Subdividing the chronic pain cohort into discovery, replication, and also for overall group we show that only degree counts of diencephalic voxels centered in the ventral lateral thalamus reflected intensity of chronic pain, independently of depression.Results
Pain intensity was reliably associated with degree count of the thalamus, which was correlated negatively with components of the default mode network and positively with the periaqueductal grey (in contrast to healthy controls). Depression scores were not reliably associated with regional degree count.Conclusion
Collectively the results suggest that, across two types of chronic pain, nociceptive specific information is relayed through the spinothalamic pathway to the lateral thalamus, potentiated by pro-nociceptive descending modulation, and interrupting cortical cognitive processes.
SUBMITTER: Davis DA
PROVIDER: S-EPMC5424698 | biostudies-literature |
REPOSITORIES: biostudies-literature