The Effects of Caffeine on the Long Bones and Testes in Immature and Young Adult Rats.
Ontology highlight
ABSTRACT: This study was to evaluate the age-dependent effects of caffeine exposure on the long bones and reproductive organs using male rats. A total of 15 immature male rats and 15 young adult male rats were allocated randomly to three groups: a control group and two groups fed caffeine with 120 and 180 mg/kg/day for 4 weeks. Exposure to caffeine at either dose significantly reduced body weight gain; a proportional reduction in muscle and fat mass in immature animals, whereas a selective reduction in fat mass with relatively preserved muscle mass in young adult animals. The long bones of immature rats exposed to caffeine were significantly shorter and lighter than those of control animals along with decreased bone minerals. However, there was no difference in the length or weight of the long bones in young adult rats exposed to caffeine. Exposure to caffeine reduced the size and absolute weight of the testes significantly in immature animals in comparison to control animals, but not in young adult animals exposed to caffeine. In contrast, the adrenal glands were significantly heavier in caffeine-fed young adult rats in comparison to control animals, but not in caffeine-fed immature rats. Our results clearly show that the negative effects of caffeine on the long bones and testes in rats are different according to the age of the rat at the time of exposure, and might therefore be caused by changes to organ sensitivity and metabolic rate at different developmental stages. Although the long bones and testes are more susceptible to caffeine during puberty, caffeine has negative effects on body fat, bone minerals and the adrenal glands when exposure occurs during young adulthood. There is a need, therefore, to educate the public the potential dangers of caffeine consumption during puberty and young adulthood.
SUBMITTER: Kwak Y
PROVIDER: S-EPMC5426506 | biostudies-literature | 2017 Apr
REPOSITORIES: biostudies-literature
ACCESS DATA