Unknown

Dataset Information

0

Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites.


ABSTRACT: Sequences of events are ubiquitous in sensory, motor, and cognitive function. Key computational operations, including pattern recognition, event prediction, and plasticity, involve neural discrimination of spatio-temporal sequences. Here, we show that synaptically-driven reaction-diffusion pathways on dendrites can perform sequence discrimination on behaviorally relevant time-scales. We used abstract signaling models to show that selectivity arises when inputs at successive locations are aligned with, and amplified by, propagating chemical waves triggered by previous inputs. We incorporated biological detail using sequential synaptic input onto spines in morphologically, electrically, and chemically detailed pyramidal neuronal models based on rat data. Again, sequences were recognized, and local channel modulation downstream of putative sequence-triggered signaling could elicit changes in neuronal firing. We predict that dendritic sequence-recognition zones occupy 5 to 30 microns and recognize time-intervals of 0.2 to 5 s. We suggest that this mechanism provides highly parallel and selective neural computation in a functionally important time range.

SUBMITTER: Bhalla US 

PROVIDER: S-EPMC5426902 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Synaptic input sequence discrimination on behavioral timescales mediated by reaction-diffusion chemistry in dendrites.

Bhalla Upinder Singh US  

eLife 20170419


Sequences of events are ubiquitous in sensory, motor, and cognitive function. Key computational operations, including pattern recognition, event prediction, and plasticity, involve neural discrimination of spatio-temporal sequences. Here, we show that synaptically-driven reaction-diffusion pathways on dendrites can perform sequence discrimination on behaviorally relevant time-scales. We used abstract signaling models to show that selectivity arises when inputs at successive locations are aligned  ...[more]

Similar Datasets

| S-EPMC3192802 | biostudies-literature
2010-05-18 | E-GEOD-19319 | biostudies-arrayexpress
2009-12-10 | GSE19319 | GEO
| S-EPMC7424032 | biostudies-literature
| S-EPMC5321479 | biostudies-literature
| S-EPMC8667025 | biostudies-literature
| S-EPMC10496648 | biostudies-literature
| S-EPMC1994115 | biostudies-literature
| S-EPMC3400572 | biostudies-literature
| S-EPMC6420135 | biostudies-literature