Unknown

Dataset Information

0

Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer.


ABSTRACT: Radiomics is the use of quantitative imaging features extracted from medical images to characterize tumor pathology or heterogeneity. Features measured at pretreatment have successfully predicted patient outcomes in numerous cancer sites. This project was designed to determine whether radiomics features measured from non-small cell lung cancer (NSCLC) change during therapy and whether those features (delta-radiomics features) can improve prognostic models. Features were calculated from pretreatment and weekly intra-treatment computed tomography images for 107 patients with stage III NSCLC. Pretreatment images were used to determine feature-specific image preprocessing. Linear mixed-effects models were used to identify features that changed significantly with dose-fraction. Multivariate models were built for overall survival, distant metastases, and local recurrence using only clinical factors, clinical factors and pretreatment radiomics features, and clinical factors, pretreatment radiomics features, and delta-radiomics features. All of the radiomics features changed significantly during radiation therapy. For overall survival and distant metastases, pretreatment compactness improved the c-index. For local recurrence, pretreatment imaging features were not prognostic, while texture-strength measured at the end of treatment significantly stratified high- and low-risk patients. These results suggest radiomics features change due to radiation therapy and their values at the end of treatment may be indicators of tumor response.

SUBMITTER: Fave X 

PROVIDER: S-EPMC5428827 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer.

Fave Xenia X   Zhang Lifei L   Yang Jinzhong J   Mackin Dennis D   Balter Peter P   Gomez Daniel D   Followill David D   Jones Aaron Kyle AK   Stingo Francesco F   Liao Zhongxing Z   Mohan Radhe R   Court Laurence L  

Scientific reports 20170403 1


Radiomics is the use of quantitative imaging features extracted from medical images to characterize tumor pathology or heterogeneity. Features measured at pretreatment have successfully predicted patient outcomes in numerous cancer sites. This project was designed to determine whether radiomics features measured from non-small cell lung cancer (NSCLC) change during therapy and whether those features (delta-radiomics features) can improve prognostic models. Features were calculated from pretreatm  ...[more]

Similar Datasets

| S-EPMC8773717 | biostudies-literature
| S-EPMC5148115 | biostudies-other
| S-EPMC6171919 | biostudies-literature
| S-EPMC5605492 | biostudies-literature
| S-EPMC6713775 | biostudies-literature
| S-EPMC6180390 | biostudies-literature
| S-EPMC8304936 | biostudies-literature
| S-EPMC9329346 | biostudies-literature
2021-11-24 | E-MTAB-10156 | biostudies-arrayexpress
| S-EPMC10425729 | biostudies-literature