Unknown

Dataset Information

0

F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.


ABSTRACT: F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates.

SUBMITTER: Baute J 

PROVIDER: S-EPMC5429023 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.

Baute Joke J   Polyn Stefanie S   De Block Jolien J   Blomme Jonas J   Van Lijsebettens Mieke M   Inzé Dirk D  

Plant & cell physiology 20170501 5


F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased l  ...[more]

Similar Datasets

| S-EPMC2914764 | biostudies-literature
| S-EPMC3282744 | biostudies-literature
| S-EPMC6128883 | biostudies-literature
| S-EPMC147611 | biostudies-other
| S-EPMC5050601 | biostudies-literature
| S-EPMC5915979 | biostudies-literature
| S-EPMC3102411 | biostudies-literature
| S-EPMC6322583 | biostudies-literature
| S-EPMC5022417 | biostudies-literature
| S-EPMC6093232 | biostudies-literature