Unknown

Dataset Information

0

Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy.


ABSTRACT: In this study, we evaluated the consequences of reducing Galectin-1 (Gal-1) in the tumor micro-environment (TME) of glioblastoma multiforme (GBM), via nose-to-brain transport. Gal-1 is overexpressed in GBM and drives chemo- and immunotherapy resistance. To promote nose-to-brain transport, we designed siRNA targeting Gal-1 (siGal-1) loaded chitosan nanoparticles that silence Gal-1 in the TME. Intranasal siGal-1 delivery induces a remarkable switch in the TME composition, with reduced myeloid suppressor cells and regulatory T cells, and increased CD4+ and CD8+ T cells. Gal-1 knock-down reduces macrophages' polarization switch from M1 (pro-inflammatory) to M2 (anti-inflammatory) during GBM progression. These changes are accompanied by normalization of the tumor vasculature and increased survival for tumor bearing mice. The combination of siGal-1 treatment with temozolomide or immunotherapy (dendritic cell vaccination and PD-1 blocking) displays synergistic effects, increasing the survival of tumor bearing mice. Moreover, we could confirm the role of Gal-1 on lymphocytes in GBM patients by matching the Gal-1 expression and their T cell signatures. These findings indicate that intranasal siGal-1 nanoparticle delivery could be a valuable adjuvant treatment to increase the efficiency of immune-checkpoint blockade and chemotherapy.

SUBMITTER: Van Woensel M 

PROVIDER: S-EPMC5430862 | biostudies-literature | 2017 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications


In this study, we evaluated the consequences of reducing Galectin-1 (Gal-1) in the tumor micro-environment (TME) of glioblastoma multiforme (GBM), via nose-to-brain transport. Gal-1 is overexpressed in GBM and drives chemo- and immunotherapy resistance. To promote nose-to-brain transport, we designed siRNA targeting Gal-1 (siGal-1) loaded chitosan nanoparticles that silence Gal-1 in the TME. Intranasal siGal-1 delivery induces a remarkable switch in the TME composition, with reduced myeloid supp  ...[more]

Similar Datasets

| S-EPMC6484828 | biostudies-literature
| S-EPMC3795378 | biostudies-literature
| S-EPMC8092188 | biostudies-literature
| S-EPMC9659205 | biostudies-literature
| S-EPMC1807947 | biostudies-literature
2021-01-01 | GSE145141 | GEO
| S-EPMC7738522 | biostudies-literature
| S-EPMC5008343 | biostudies-literature
| S-EPMC8144702 | biostudies-literature
| PRJNA330963 | ENA