BRD7 mediates hyperglycaemia-induced myocardial apoptosis via endoplasmic reticulum stress signalling pathway.
Ontology highlight
ABSTRACT: Bromodomain-containing protein 7 (BRD7) is a tumour suppressor that is known to regulate many pathological processes including cell growth, apoptosis and cell cycle. Endoplasmic reticulum (ER) stress-induced apoptosis plays a key role in diabetic cardiomyopathy (DCM). However, the molecular mechanism of hyperglycaemia-induced myocardial apoptosis is still unclear. We intended to determine the role of BRD7 in high glucose (HG)-induced apoptosis of cardiomyocytes. In vivo, we established a type 1 diabetic rat model by injecting a high-dose streptozotocin (STZ), and lentivirus-mediated short hairpin RNA (shRNA) was used to inhibit BRD7 expression. Rats with DCM exhibited severe myocardial remodelling, fibrosis, left ventricular dysfunction and myocardial apoptosis. The expression of BRD7 was up-regulated in the heart of diabetic rats, and inhibition of BRD7 had beneficial effects against diabetes-induced heart damage. In vitro, H9c2 cardiomyoblasts was used to investigate the mechanism of BRD7 in HG-induced apoptosis. Treating H9c2 cardiomyoblasts with HG elevated the level of BRD7 via activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and increased ER stress-induced apoptosis by detecting spliced/active X-box binding protein 1 (XBP-1s) and C/EBP homologous protein (CHOP). Furthermore, down-regulation of BRD7 attenuated HG-induced expression of CHOP via inhibiting nuclear translocation of XBP-1s without affecting the total expression of XBP-1s. In conclusion, inhibition of BRD7 appeared to protect against hyperglycaemia-induced cardiomyocyte apoptosis by inhibiting ER stress signalling pathway.
SUBMITTER: Wang XM
PROVIDER: S-EPMC5431142 | biostudies-literature | 2017 Jun
REPOSITORIES: biostudies-literature
ACCESS DATA