Unknown

Dataset Information

0

Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress.


ABSTRACT: Mycobacterium tuberculosis (Mtb) can persist in the human host in a latent state for decades, in part because it has the ability to withstand numerous stresses imposed by host immunity. Prior studies have established the essentiality of the periplasmic protease MarP for Mtb to survive in acidified phagosomes and establish and maintain infection in mice. However, the proteolytic substrates of MarP that mediate these phenotypes were unknown. Here, we used biochemical methods coupled with supravital chemical probes that facilitate imaging of nascent peptidoglycan to demonstrate that during acid stress MarP cleaves the peptidoglycan hydrolase RipA, a process required for RipA's activation. Failure of RipA processing in MarP-deficient cells leads to cell elongation and chain formation, a hallmark of progeny cell separation arrest. Our results suggest that sustaining peptidoglycan hydrolysis, a process required for cell elongation, separation of progeny cells, and cell wall homeostasis in growing cells, may also be essential for Mtb's survival in acidic conditions.

SUBMITTER: Botella H 

PROVIDER: S-EPMC5437814 | biostudies-literature | 2017 Feb

REPOSITORIES: biostudies-literature

altmetric image

Publications

<i>Mycobacterium tuberculosis</i> protease MarP activates a peptidoglycan hydrolase during acid stress.

Botella Helene H   Vaubourgeix Julien J   Lee Myung Hee MH   Song Naomi N   Xu Weizhen W   Makinoshima Hideki H   Glickman Michael S MS   Ehrt Sabine S  

The EMBO journal 20170105 4


<i>Mycobacterium tuberculosis</i> (Mtb) can persist in the human host in a latent state for decades, in part because it has the ability to withstand numerous stresses imposed by host immunity. Prior studies have established the essentiality of the periplasmic protease MarP for Mtb to survive in acidified phagosomes and establish and maintain infection in mice. However, the proteolytic substrates of MarP that mediate these phenotypes were unknown. Here, we used biochemical methods coupled with su  ...[more]

Similar Datasets

| S-EPMC4050617 | biostudies-literature
| S-EPMC4120117 | biostudies-literature
| S-EPMC8360153 | biostudies-literature
2021-07-16 | GSE165514 | GEO
2021-07-16 | GSE166805 | GEO
2021-07-16 | GSE166804 | GEO
| S-EPMC3930563 | biostudies-literature
| S-EPMC3269530 | biostudies-literature