Unknown

Dataset Information

0

Iron Efflux by PmtA Is Critical for Oxidative Stress Resistance and Contributes Significantly to Group A Streptococcus Virulence.


ABSTRACT: Group A Streptococcus (GAS) is a human-only pathogen that causes a spectrum of disease conditions. Given its survival in inflamed lesions, the ability to sense and overcome oxidative stress is critical for GAS pathogenesis. PerR senses oxidative stress and coordinates the regulation of genes involved in GAS antioxidant defenses. In this study, we investigated the role of PerR-controlled metal transporter A (PmtA) in GAS pathogenesis. Previously, PmtA was implicated in GAS antioxidant defenses and suggested to protect against zinc toxicity. Here, we report that PmtA is a P1B4-type ATPase that functions as an Fe(II) exporter and aids GAS defenses against iron intoxication and oxidative stress. The expression of pmtA is specifically induced by excess iron, and this induction requires PerR. Furthermore, a pmtA mutant exhibited increased sensitivity to iron toxicity and oxidative stress due to an elevated intracellular accumulation of iron. RNA-sequencing analysis revealed that GAS undergoes significant alterations in gene expression to adapt to iron toxicity. Finally, using two mouse models of invasive infection, we demonstrated that iron efflux by PmtA is critical for bacterial survival during infection and GAS virulence. Together, these data demonstrate that PmtA is a key component of GAS antioxidant defenses and contributes significantly to GAS virulence.

SUBMITTER: VanderWal AR 

PROVIDER: S-EPMC5442632 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Iron Efflux by PmtA Is Critical for Oxidative Stress Resistance and Contributes Significantly to Group A Streptococcus Virulence.

VanderWal Arica R AR   Makthal Nishanth N   Pinochet-Barros Azul A   Helmann John D JD   Olsen Randall J RJ   Kumaraswami Muthiah M  

Infection and immunity 20170523 6


Group A <i>Streptococcus</i> (GAS) is a human-only pathogen that causes a spectrum of disease conditions. Given its survival in inflamed lesions, the ability to sense and overcome oxidative stress is critical for GAS pathogenesis. PerR senses oxidative stress and coordinates the regulation of genes involved in GAS antioxidant defenses. In this study, we investigated the role of PerR-controlled metal transporter A (PmtA) in GAS pathogenesis. Previously, PmtA was implicated in GAS antioxidant defe  ...[more]

Similar Datasets

| S-EPMC4453566 | biostudies-literature
| S-EPMC153223 | biostudies-literature
| S-EPMC6154617 | biostudies-literature
| S-EPMC4432744 | biostudies-literature
| S-EPMC4305177 | biostudies-literature
| S-EPMC7580550 | biostudies-literature
2015-04-18 | GSE67988 | GEO
| S-EPMC5963199 | biostudies-other
| S-EPMC3993191 | biostudies-literature
| S-EPMC97493 | biostudies-literature