Unknown

Dataset Information

0

The active force-length relationship is invisible during extensive eccentric contractions in skinned skeletal muscle fibres.


ABSTRACT: In contrast to experimentally observed progressive forces in eccentric contractions, cross-bridge and sliding-filament theories of muscle contraction predict that varying myofilament overlap will lead to increases and decreases in active force during eccentric contractions. Non-cross-bridge contributions potentially explain the progressive total forces. However, it is not clear whether underlying abrupt changes in the slope of the nonlinear force-length relationship are visible in long isokinetic stretches, and in which proportion cross-bridges and non-cross-bridges contribute to muscle force. Here, we show that maximally activated single skinned rat muscle fibres behave (almost across the entire working range) like linear springs. The force slope is about three times the maximum isometric force per optimal length. Cross-bridge and non-cross-bridge contributions to the muscle force were investigated using an actomyosin inhibitor. The experiments revealed a nonlinear progressive contribution of non-cross-bridge forces and suggest a nonlinear cross-bridge contribution similar to the active force-length relationship (though with increased optimal length and maximum isometric force). The linear muscle behaviour might significantly reduce the control effort. Moreover, the observed slight increase in slope with initial length is in accordance with current models attributing the non-cross-bridge force to titin.

SUBMITTER: Tomalka A 

PROVIDER: S-EPMC5443931 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

The active force-length relationship is invisible during extensive eccentric contractions in skinned skeletal muscle fibres.

Tomalka André A   Rode Christian C   Schumacher Jens J   Siebert Tobias T  

Proceedings. Biological sciences 20170501 1854


In contrast to experimentally observed progressive forces in eccentric contractions, cross-bridge and sliding-filament theories of muscle contraction predict that varying myofilament overlap will lead to increases and decreases in active force during eccentric contractions. Non-cross-bridge contributions potentially explain the progressive total forces. However, it is not clear whether underlying abrupt changes in the slope of the nonlinear force-length relationship are visible in long isokineti  ...[more]

Similar Datasets

| S-EPMC6545074 | biostudies-literature
2020-05-17 | GSE139661 | GEO
| PRJNA586864 | ENA
| S-EPMC2098727 | biostudies-literature
| S-EPMC6204166 | biostudies-literature
| S-EPMC5991729 | biostudies-literature
| S-EPMC4440641 | biostudies-literature
| S-EPMC3000472 | biostudies-literature
| S-EPMC3861770 | biostudies-literature
| S-EPMC7591807 | biostudies-literature