Unknown

Dataset Information

0

DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption.


ABSTRACT: Dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in the induction of osteoclast (OC) cell fusion, as well as DC-mediated immune regulation. While DC-STAMP gene expression is upregulated in the gingival tissue with periodontitis, its pathophysiological roles in periodontitis remain unclear. To evaluate the effects of DC-STAMP in periodontitis, anti-DC-STAMP-monoclonal antibody (mAb) was tested in a mouse model of ligature-induced periodontitis ( n = 6-7/group) where Pasteurella pneumotropica ( Pp)-reactive immune response activated T cells to produce receptor activator of nuclear factor kappa-B ligand (RANKL), which, in turn, promotes the periodontal bone loss via upregulation of osteoclastogenesis. DC-STAMP was expressed on the cell surface of mature multinuclear OCs, as well as immature mononuclear OCs, in primary cultures of RANKL-stimulated bone marrow cells. Anti-DC-STAMP-mAb suppressed the emergence of large, but not small, multinuclear OCs, suggesting that DC-STAMP is engaged in the late stage of cell fusion. Anti-DC-STAMP-mAb also inhibited pit formation caused by RANKL-stimulated bone marrow cells. Attachment of ligature to a second maxillary molar induced DC-STAMP messenger RNA and protein, along with elevated tartrate-resistant acid phosphatase-positive (TRAP+) OCs and alveolar bone loss. As we expected, systemic administration of anti-DC-STAMP-mAb downregulated the ligature-induced alveolar bone loss. Importantly, local injection of anti-DC-STAMP-mAb also suppressed alveolar bone loss and reduced the total number of multinucleated TRAP+ cells in mice that received ligature attachment. Attachment of ligature induced significantly elevated tumor necrosis factor-?, interleukin-1?, and RANKL in the gingival tissue compared with the control site without ligature ( P < 0.05), which was unaffected by local injection with either anti-DC-STAMP-mAb or control-mAb. Neither in vivo anti- Pp IgG antibody nor in vitro anti- Pp T-cell response and resultant production of RANKL was affected by anti-DC-STAMP-mAb. This study illustrated the roles of DC-STAMP in promoting local OC cell fusion without affecting adaptive immune responses to oral bacteria. Therefore, it is plausible that a novel therapeutic regimen targeting DC-STAMP could suppress periodontal bone loss.

SUBMITTER: Wisitrasameewong W 

PROVIDER: S-EPMC5444615 | biostudies-literature | 2017 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications


Dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in the induction of osteoclast (OC) cell fusion, as well as DC-mediated immune regulation. While DC-STAMP gene expression is upregulated in the gingival tissue with periodontitis, its pathophysiological roles in periodontitis remain unclear. To evaluate the effects of DC-STAMP in periodontitis, anti-DC-STAMP-monoclonal antibody (mAb) was tested in a mouse model of ligature-induced periodontitis ( n = 6-7/group) where Paste  ...[more]

Similar Datasets

| S-EPMC5998976 | biostudies-literature
| S-EPMC3304467 | biostudies-literature
| S-EPMC4238037 | biostudies-literature
| S-EPMC5386838 | biostudies-literature
| S-EPMC5873876 | biostudies-literature
| S-EPMC3293106 | biostudies-literature
| S-EPMC8281931 | biostudies-literature
| S-EPMC3916098 | biostudies-other
| S-EPMC11254843 | biostudies-literature
| S-EPMC6889896 | biostudies-literature