Unknown

Dataset Information

0

Enhancement of radiosensitivity by the novel anticancer quinolone derivative vosaroxin in preclinical glioblastoma models.


ABSTRACT:

Purpose

Glioblastoma multiforme (GBM) is the most aggressive brain tumor. The activity of vosaroxin, a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, was investigated in GBM preclinical models as a single agent and combined with radiotherapy (RT).

Results

Vosaroxin showed antitumor activity in clonogenic survival assays, with IC50 of 10-100 nM, and demonstrated radiosensitization. Combined treatments exhibited significantly higher ?H2Ax levels compared with controls. In xenograft models, vosaroxin reduced tumor growth and showed enhanced activity with RT; vosaroxin/RT combined was more effective than temozolomide/RT. Vosaroxin/RT triggered rapid and massive cell death with characteristics of necrosis. A minor proportion of treated cells underwent caspase-dependent apoptosis, in agreement with in vitro results. Vosaroxin/RT inhibited RT-induced autophagy, increasing necrosis. This was associated with increased recruitment of granulocytes, monocytes, and undifferentiated bone marrow-derived lymphoid cells. Pharmacokinetic analyses revealed adequate blood-brain penetration of vosaroxin. Vosaroxin/RT increased disease-free survival (DFS) and overall survival (OS) significantly compared with RT, vosaroxin alone, temozolomide, and temozolomide/RT in the U251-luciferase orthotopic model.

Materials and methods

Cellular, molecular, and antiproliferative effects of vosaroxin alone or combined with RT were evaluated in 13 GBM cell lines. Tumor growth delay was determined in U87MG, U251, and T98G xenograft mouse models. (DFS) and (OS) were assessed in orthotopic intrabrain models using luciferase-transfected U251 cells by bioluminescence and magnetic resonance imaging.

Conclusions

Vosaroxin demonstrated significant activity in vitro and in vivo in GBM models, and showed additive/synergistic activity when combined with RT in O6-methylguanine methyltransferase-negative and -positive cell lines.

SUBMITTER: Gravina GL 

PROVIDER: S-EPMC5444710 | biostudies-literature | 2017 May

REPOSITORIES: biostudies-literature

altmetric image

Publications

Enhancement of radiosensitivity by the novel anticancer quinolone derivative vosaroxin in preclinical glioblastoma models.

Gravina Giovanni Luca GL   Mancini Andrea A   Mattei Claudia C   Vitale Flora F   Marampon Francesco F   Colapietro Alessandro A   Rossi Giulia G   Ventura Luca L   Vetuschi Antonella A   Di Cesare Ernesto E   Fox Judith A JA   Festuccia Claudio C  

Oncotarget 20170501 18


<h4>Purpose</h4>Glioblastoma multiforme (GBM) is the most aggressive brain tumor. The activity of vosaroxin, a first-in-class anticancer quinolone derivative that intercalates DNA and inhibits topoisomerase II, was investigated in GBM preclinical models as a single agent and combined with radiotherapy (RT).<h4>Results</h4>Vosaroxin showed antitumor activity in clonogenic survival assays, with IC50 of 10-100 nM, and demonstrated radiosensitization. Combined treatments exhibited significantly high  ...[more]

Similar Datasets

| S-EPMC4576993 | biostudies-literature
| S-EPMC2855444 | biostudies-literature
| S-EPMC8401670 | biostudies-literature
| S-EPMC7578894 | biostudies-literature
| S-EPMC5721678 | biostudies-literature
| S-EPMC4498963 | biostudies-literature
| S-EPMC9519319 | biostudies-literature
| S-EPMC5604960 | biostudies-literature
| S-EPMC6222694 | biostudies-literature
| S-EPMC3792427 | biostudies-literature